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SUMMARY

The main purpose of this work is to improve existing methods for stress and slip analysis of
nonbonded flexible pipe armouring layers and to contribute to better understanding of the

flexible pipe behaviour under dynamic loading.

Existing methods have been based on simple analytical formulas and are unable to take into
account the effects from realistic end restraints. A finite element formulation has therefore
been developed solving the equilibrium equations for one armouring tendon with arbitrary
loading and boundary conditions. Several case studies have been carried out both to verify the
accuracy of the model and to investigate different physical effects, giving better understanding
of flexible pipe behaviour. Results from the present model have also been compared with
corresponding calculations by other more simple methods. The main conclusion from this
investigation is that the existing models cannot be used to predict stresses in the end fitting

region and that they will give conservative estimates for relative displacements and wear.

Deviations have been found between test data and results obtained by simple formulas
regarding cross section characteristics. Proposed improvements of such formulas have shown

to give improved correlation with test results,

The present model has been verified by quantitative and qualitative comparisons with
experimental data. The quantitative comparison has been carried out by measuring strains
along one tendon of a 4-inch nonbonded pipe and then compare results from the numerical
model. The overall conclusion from this comparison is that there is a good correlation between
predicted and measured behaviour. The qualitative comparison has been carried out by
investigating the correlation between the predicted conditions of stresses and displacements,
and the failure modes obtained by fatigue testing of two 4-inch flexible pipes. Good
correlation has been found between the predicted conditions and the observed failure modes.

The overall conclusion is that the developed model is capable of describing the stresses and

displacements needed to evaluate various failure modes. The potential of the method is to
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perform fatigue analysis of flexible risers at end restraints on the basis of SN-data in a similar
way as for tensioned steel risers. The failure modes found from experiments are, however, not
included among failure modes discussed so far in the literature. Thus there is an obvious need
for future research work both to identify all relevant failure modes and to quantify the primary

parameters describing each individual failure mode.
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Nomenclature xi

NOMENCLATURE

General rules

Vectors, tensors and matrices are written by bold letters, e.g. N, X.

- A transpose of a matrix is denoted by superscript T.

- Strains and displacements referred to the tendon cross section centre line is denoted by

superscript %,

Strains referred to the local curvilinear coordinate system is denoted by superscript *.
- Subscript 0 denotes initial configuation.
- A is used to denote incremental values.

In general the letters i,j,k,l,m,n are used as indices describing vector and tensor components

if not otherwise noted.

- For the purpose of tensor and vector calculations, capital letters are used both for base
vectors and vector and tensor components in the undeformed configuration. The same rule

also apply for indices. In the deformed configuration small letters are used.
- Einstein’s summation convention is adopted when writing tensor components or index form.

A partial derivative is whenever convenient denoted by comma followed by the index

representing the variable involved, e.g.:

1
z\ - Z
" ax!
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The square of the arc length along dr referred to the local curvilinear axes x with base

vectors g; is expressed by the single dot product as:
di2 = dr - dr = dx'dxig; - g; = g dx'dx/

where g;; is the covariant metric tensor.

For transformation of a second order tensor with components AKL* referred to the local
curvilinear coordinate system with axes X! to corresponding components Ay in a local

Cartesian coordinate system with axes Y, the following transformation rule apply:

axXoxl «
Ay = ——,"——,"AKL
oY! aY

The scalar product or double dot product of two second order tensors is denoted by a

double dot, e.8.:

where a¥ is the contravariant components of @ and b;; is the covariant components of b
The cross product is denoted by a cross X, e.g.:

axb=e,-j,‘ajbkl,

where e, is the permutation symbol.
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Nomenclature

xiii

Roman letters

GKL GH

Width of tendon cross section (m).

Rod cross section area (mz).

Thickness of tendon cross section (m).

Radius of individual contact areas between two layers of armouring (m).
Young’s modulus of elasticity (Nm?).

Shear modulus (Nm’z).

Cross section torsion constant defined by Eq.(2.101) (m%).

Cross section sliding bending stiffness (Nm?2).

Base vectors directed along pipe centre line Cartesian coordinate axes.

Tensor and component form of the Green strain tensor in local Cartesian system

Green strain tensor components in local curvilinear system

Green strain tensor components along rod centre line in local curvilinear

system.
Determinant of metric tensor.

Base vectors directed along the local curvilinear coordinate axes in undeformed,
deformed configurations.

Contravariant components of metric tensor in undeformed, deformed
configurations.

Covariant components of metric tensor in undeformed, deformed configurations.
Normalized gap between individual tendons = gap/width.

Base vectors directed along curve principal torsion-flexure axes.

Cross section torsion constant defined by the integral in Eq.(2.101) (m?).
Polar moment of inertia (m4).

Inertia moment about X? axis (m?).

Inertia moment about X? axis (m4).

Base vectors directed along local Cartesian coordinate axes.

Element stiffness matrix.

Cross section torsion constant defined by Eq.(2.102) (m®).

Cross section torsion constant defined by Eq.(2.104) (m%).
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Nomenclature Xiv

Kr Tangential stiffness matrix.

l Element length (m).

my Distributed moment acting about the local coordinate axes (N).

M, Moment stress resultant acting about the local coordinate axes (Nm).

N Matrix of displacement interpolation functions.

P,p Denotes a material point in the rod cross section during undeformed, deformed
configurations.

Pypy Denotes a material point at the centre line of the rod during undeformed,
deformed configurations.

o, Force stress resultants acting along the local coordinate axes (N).

AQ Incremental load vector of total equilibrium equation system.

Aq Incremental nodal displacement vector of total equation system.

q; Distributed loads acting along the local coordinate axes (Nm™h).

R Layer radius from pipe centre line to tendon centre line (m).

R,r Position vector of a material particle arbitrarily positioned in the rod cross
section during undeformed, deformed configurations.

Ryry Position vector of a material particle positioned in the centre line of the rod
cross section during undeformed, deformed configurations.

S¢S Surface of rod in undeformed, deformed configurations.

S Element load vector.

t Surface traction.

w.u; Vector and component form of displacement field.

ulu? Vector and component form of displacement field along centre line.

VoV Volume of rod in undeformed/deformed configurations

VW Surface coordinates.

v Vector of element degrees of freedom.

x| ¢ Local curvilinear coordinates.

zZ Cartesian coordinates referred to a Cartesian coordinate system arbitrarily

positioned along the pipe centre line.
Pipe longitudinal coordinate referred to a fixed Cartesian coordinate system.
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SUMMARY

The main purpose of this work is to improve existing methods for stress and slip analysis of
nonbonded flexible pipe armouring layers and to contribute to better understanding of the

flexible pipe behaviour under dynamic loading.

Existing methods have been based on simple analytical formulas and are unable to take into
account the effects from realistic end restraints. A finite element formulation has therefore
been developed solving the equilibrium equations for one armouring tendon with arbitrary
loading and boundary conditions. Several case studies have been carried out both to verify the
accuracy of the model and to investigate different physical effects, giving better understanding
of flexible pipe behaviour. Results from the present model have also been compared with
corresponding calculations by other more simple methods. The main conclusion from this
investigation is that the existing models cannot be used to predict stresses in the end fitting

region and that they will give conservative estimates for relative displacements and wear.

Deviations have been found between test data and results obtained by simple formulas
regarding cross section characteristics. Proposed improvements of such formulas have shown

to give improved correlation with test results.

The present model has been verified by quantitative and qualitative comparisons with
experimental data. The quantitative comparison has been carried out by measuring strains
along one tendon of a 4-inch nonbonded pipe and then compare results from the numerical
model. The overall conclusion from this comparison is that there is a good correlation between
predicted and measured behaviour. The qualitative comparison has been carried out by
investigating the correlation between the predicted conditions of stresses and displacements,
and the failure modes obtained by fatigue testing of two 4-inch flexible pipes. Good
correlation has been found between the predicted conditions and the observed failure modes.

The overall conclusion is that the developed model is capable of describing the stresses and

displacements needed to evaluate various failure modes. The potential of the method is to
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perform fatigue analysis of flexible risers at end restraints on the basis of SN-data in a similar
way as for tensioned steel risers. The failure modes found from experiments are, however, not
included among failure modes discussed so far in the literature. Thus there is an obvious need
for future research work both to identify all relevant failure modes and to quantify the primary

parameters describing each individual failure mode.
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NOMENCLATURE

General rules

Vectors, tensors and matrices are written by bold letters, e.g. N, X.

- A transpose of a matrix is denoted by superscript T.

- Strains and displacements referred to the tendon cross section centre line is denoted by

superscript 0

Strains referred to the local curvilinear coordinate system is denoted by superscript *.
- Subscript 0 denotes initial configuation.
- A is used to denote incremental values.

In general the letters i,j,k,/,m,n are used as indices describing vector and tensor components

if not otherwise noted.

- For the purpose of tensor and vector calculations, capital letters are used both for base
vectors and vector and tensor components in the undeformed configuration. The same rule
also apply for indices. In the deformed configuration small letters are used.

- Einstein’s summation convention is adopted when writing tensor components or index form.

- A partial derivative is whenever convenient denoted by comma followed by the index

representing the variable involved, e.g.:
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The square of the arc length along dr referred to the local curvilinear axes X' with base

vectors g; is expressed by the single dot product as:
di*> = dr - dr = dx'dxlg; - g; = 8 dx idx

where g;; is the covariant metric tensor.

For transformation of a second order tensor with components A KL‘ referred to the local
curvilinear coordinate system with axes X to corresponding components Aj; in a local

Cartesian coordinate system with axes ¥, the following transformation rule apply:

axXoxL .
Ay = ——7kL
or! oy

The scalar product or double dot product of two second order tensors is denoted by a

double dot, e.8.:
= ah = a¥
where a” is the contravariant components of @ and b;; is the covariant components of b

The cross product is denoted by a cross X, €.g.:

aXb=eijkajka‘

where ey is the permutation symbol.
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Roman letters

Width of tendon cross section (m).

Rod cross section area (mz).

Thickness of tendon cross section (m).

Radius of individual contact areas between two layers of armouring (m).
Young’'s modulus of elasticity (Nm‘z).

Shear modulus (Nm‘z).

Cross section torsion constant defined by Eq.(2.101) (m*).

Cross section sliding bending stiffness (Nm?).

Base vectors directed along pipe centre line Cartesian coordinate axes.

Tensor and component form of the Green strain tensor in local Cartesian system

Green strain tensor components in local curvilinear system

Green strain tensor components along rod centre line in local curvilinear

system.
Determinant of metric tensor.

Base vectors directed along the local curvilinear coordinate axes in undeformed,
deformed configurations.

Contravariant components of metric tensor in undeformed, deformed
configurations.

Covariant components of metric tensor in undeformed, deformed configurations.
Normalized gap between individual tendons = gap/width.

Base vectors directed along curve principal torsion-flexure axes.

Cross section torsion constant defined by the integral in Eq.(2.101) (m%).
Polar moment of inertia (m4).

Inertia moment about X° axis (m“).

Inertia moment about X° axis (m“).

Base vectors directed along local Cartesian coordinate axes.
Element stiffness matrix.

Cross section torsion constant defined by Eq.(2.102) (mS).
Cross section torsion constant defined by Eq.(2.104) (m?).

Ph.D. Thesis Svein Sasvik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes

Nomenclature

Xiv

Kr
l

u ,u‘-
w0
VoV

ww

x| ¢

Tangential stiffness matrix.

Element length (m).

Distributed moment acting about the local coordinate axes (N).

Moment stress resultant acting about the local coordinate axes (Nm).

Matrix of displacement interpolation functions.

Denotes a material point in the rod cross section during undeformed, deformed
configurations.

Denotes a material point at the centre line of the rod during undeformed,
deformed configurations.

Force stress resultants acting along the local coordinate axes (N).
Incremental load vector of total equilibrium equation system.

Incremental nodal displacement vector of total equation system.

Distributed loads acting along the local coordinate axes (Nm}).

Layer radius from pipe centre line to tendon centre line (m).

Position vector of a material particle arbitrarily positioned in the rod cross
section during undeformed, deformed configurations.

Position vector of a material particle positioned in the centre line of the rod
cross section during undeformed, deformed configurations.

Surface of rod in undeformed, deformed configurations.

Element load vector.

Surface traction.

Vector and component form of displacement field.

Vector and component form of displacement field along centre line.

Volume of rod in undeformed/deformed configurations

Surface coordinates.

Vector of element degrees of freedom.

Local curvilinear coordinates.

Cartesian coordinates referred to a Cartesian coordinate system arbitrarily
positioned along the pipe centre line.

Pipe longitudinal coordinate referred to a fixed Cartesian coordinate system.

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes

Nomenclature xv
Greek letters

o - Tendon lay angle.

B - Twist (m}).

r - Cross section torsion constant defined by Eq.(2.103) (m®).

A - Incrementation symbol.

Acg, - Fatigue stress limit (Nm).

) - Virtualization symbol.

g, - Global pipe axial strain.

g - Axial strain of rod.

€5,€3 - Kinematic quantities expressing rotation.

£.& - Tensor and component form of the natural strain tensor in local Cartesian

coordinate system

0 - Denotes rotation angle.

6; - Rotation about the local curvilinear axes.

X - Principal curvawre along curve (mh).

K; - Total accumulated torsion of rod centre line (m™}).

K, - Total accumulated transverse curvature of rod centre line (m'l).

Ky - Total accumulated normal curvature of rod centre line (m™).

K, K. - Principal curvatures of the supporting surface (mh).

K, - Pipe surface curvature in transverse tendon direction (along the X3 axis) (m").

A - Lagrange multiplier.

T} - Coefficient of friction.

E - Non-dimensional length coordinate along beam element.

p - Radius of curvature of pipe surface at neutral axis (m).

g,0! - Tensor and component form of the Cauchy stress tensor in the local Cartesian
coordinate system.

O, - Axial stress component (Nm‘z).

Oy - Axial stress component induced by tension loading (Nm'z).

Oy - Axial stress component induced by curvature effects (Nm’z).

Op2 - Bending stress component caused by bending about the surface normal, ie

transverse curvature (Nm'z).
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Gy3 - Bending stress component caused by normal curvature (Nm™2).

T - Torsion along curve (mh).

] - Spherical coordinate angle.

w - Angle between surface normal and curve normal.

o(X%X3) - St.Venant warping function.

@, - Torsion deformation, i.. twist (m™!). Between two equilibrium states (m™h),
Aw, = Ax,.

W, - Transverse curvature deformation (m'l). Between two equilibrium states,
Aw, = Ax;,.

W, - Normal curvature deformation (m'l). Between two equilibrium states,
Aw; = AK;.
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1 INTRODUCTION

1.1 _The flexible pipe concept

The flexible pipe concept has been successfully used during several years both as dynamic
risers and flowlines in connection with fixed and floating offshore petroleum production. For
floating production systems it represents an attractive alternative to a tensioned steel riser
since it does not require a heave compensation and tensioner system at the top. At the same
time, it offers easy installation and reuse. This application requires a long duration pipe with
high capacity with regard to tensile loading and bending, and to internal and external pressure,

combined with a low bending stiffness and low critical radius of curvature.

1.1.1  Cross section properties

The desired properties are obtained by making a composite layered cross section where each
layer has its specific function. The basic principle is based on using a synthetic conduit that

provides scaling of the transported product and then apply helical reinforcement in order to

carry the internal pressure.

Flexible pipes can be classified into bonded and nonbonded pipes depending on the cross

section structure. Nonbonded pipes have separate layers that are free to move relative to each
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other, while the cross section of a bonded pipe is vulcanized, i.e. layers are completely

bonded. Examples of typical cross sections of bonded and nonbonded flexible pipes are shown

in Figure 1.1.

Figure 1.1 Cross sections of flexible pipes

The basic principle ensuring flexibility of nonbonded flexible pipes during bending is that the
armouring tendons are free to slip under low friction. For the bonded pipe, the tendons are
restrained by the surrounding rubber. The basic idea here is however to utilize the fact that
the low shear modulus of the rubber will control and restrict the stresses induced by bending

and hence give a sufficient flexibility.

The dominating type of flexibles today is the nonbonded pipe, which is the type that will be

focused on in the present work. The function of each layer of the nonbonded pipe shown in

Figure 1.1 B is given by:
1. Inner steel carcass to prevent collapse of the inner plastic sheath due to external pressure.

2. Inner plastic sheath to provide sealing of the internal fluid.
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3. A wound steel spiral, called zeta spiral, to provide capacity with regard to radial loading

caused by intenal and external pressure.

4. Flat steel carcass to give additional resistance to the radial forces in very high pressure

pipes.
5. Anti-friction intermediate plastic sheath.

6. Double cross-wound armouring layers to provide axial and torsional capacity of the pipe.

7. External plastic sheath for protection against corrosion and to bind the underlaying

armouring layers.

There are several alternative terms in use when referring to one armouring element. Example
of names are spiral, strand, wire and tendon. Normally, the term wire, is used when referring
to the armouring used in bonded pipes, each being made of a number of thin steel strands that
are helically wound into a wire structure. The term tendon is used when referring to the
armouring used in nonbonded pipes, each representing a continuous steel cross section, which
is helically cold-drawn onto the supporting pipe structure. Throughout this study, the term
tendon will be used when referring to any helically wound armouring element if not otherwise

noted.

Flexible pipe design for static applications takes into consideration the initial strength of the

pipe and degradation with time of the materials involved, for example by corrosion, ageing

and erosion.
In dynamic application other phenomena are important:

Mechanical deterioration of the strength by fatigue or wear induced by slip between layers

due to cyclic bending.
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High stresses in the armouring layers due to tension and bending extremes.

Thus both stresses and relative movement between layers are important response parameters

to consider when describing the structural response of flexible pipes exposed to dynamic

loading.

The present work will focus on establishing models that can be used for stress and fatigue
analysis of armouring layers in flexible pipes exposed to torsion, tension and bending

deformation. The problem of material ageing is thus not considered.

1.1.2 __ Physical behaviour of flexible pipes

The physical behaviour of a flexible pipe exposed to tension, torsion and bending depends on
the cross section structure. A bonded pipe will within the relevant range of loading typically
respond linearly to all these loadings , as shown in Figure 1.2 a. This is also valid for the

nonbonded pipe as long as it is exposed to tension and torsion.

091
os
07
084
fos
04
0N
021
0

01 02 03 04 05 06 07 08 00 — v v v -
DISPLACEMENT 0 02 04 e\n&.m 08 2
a. Axisymmetric behaviour b. Behaviour in bending

Figure 1.2 Behaviour of flexible pipes
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During bending, however, the nonbonded pipe will have a nonlinear moment-curvature
relationship as shown in Figure 1.2 b. The first region of the curve corresponds to the
assumption that plane sections remain plane, i.e there is no slip between the armouring and
the supporting pipe structure. Thus, the bending stiffness is comparable to a steel pipe of
similar dimension. As the moment increase beyond the limit which is normally termed the
friction moment, slip will occur due to the shear stresses developed between the armouring
element and the supporting pipe structure, leading to a significant drop in bending stiffness.
The new bending stiffness will in the following be termed the sliding bending stiffness and
is given by the stiffness of the plastic tubulars and the strain energy related to local bending
moments and torsion in each armouring tendon. It also represents the bending stiffness

normally given from the manufacturers for the purpose of global design analyses.

The sliding bending stiffness remains constant until .ae initial gaps between each tendon are
closed. This occurs at the critical radius of curvature and from that point, the bending
stiffness and armouring stresses will increase significantly. The critical curvature represents

therefore a design limit that should not be exceeded under normal operation.

For a bonded pipe, the critical radius of curvature is normally determined from the maximum
allowable outer fibre strain in the rubber. In some designs this criteria will also apply for

nonbonded pipes.

1.1.3  Riser configurations

Flexible pipes have a large number of applications related to offshore production of oil and
gas. The present study will specially focus on investigating the internal response of flexible
pipes used as fully dynamic risers in fixed and floating offshore production and offshore
loading systems. Other applications, such as flexible spools or flowlines laying on the seabed,

will not be investigated.

Examples of commonly used riser configurations in offshore production systems are presented
in Figure 1.3.
1992
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Figure 1.3 Riser configurations

These single riser configurations are often the basic components of more complex riser
systems. Thus, a basic knowledge of the behaviour of these will be most important in

connection with design of most flexible riser systems. The jumper configuration (see Figure
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1.3 A) is used for transfer of fluids from a fixed wellhead platform to a floating production
unit, confer Bjelland [1.1] and Brown et. al. [1.2]). The jumper configuration is also frequently

used in offshore loading systems.

No objective procedure has been established for optimizing a flexible riser configuration.
Selecting a configuration for a particular floating production system has therefore to be based
on experience and engineering judgements. A tentative ranking of the standard configurations
is presented by Pettenati-Auziere [1.3] and is based on static and dynamic behaviour, ease of

installation, adaptability to other installations and costs.

1.1.4 _Termination of flexible risers to rigid structures

An important problem in flexible riser design is how to terminate the flexible riser to rigid
structures. A practical way to solve this problem is to introduce a properly designed bending
stiffener at the supports, as indicated in Figure 1.4. The purpose of a bending stiffener is to
provide a gradually increase of the bending stiffness from the rather low value of the flexible

riser to a significant higher value that can tolerate a rigid connection.

The primary design requirement of a bending stiffener is that the critical curvature is not
exceeded during the lifetime of the riser. Secondly, the bending stiffener should be optimized
to give minimum support forces, i.c. axial force, shear force and bending moment. Thus the
length of the bending stiffener should be as small as possible. Procedures that can be used in
order to meet the above design criteria are given by Sgdahl [1.4]). As reported in [1.4), the
curvature distribution along the bending stiffener in an extreme load condition, is characterized
by high bending gradients. This is an important observation when dealing with stress analysis

of the flexible riser armouring layers.
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Figure 1.4 Bending stiffener

1.2 Design principles

The present work will focus on degradation due to fatigue and wear of flexible risers that are
exposed to cyclic environmental loads under normal operating conditions. In the following,

the design principles related to these degradation processes will be reviewed.

1.2.1 Load effects in flexible risers

Flexible risers are normally exposed to the following types of loading during operation:

- Deadweight
- Environmental loading
- Intemnal and external pressure

- Internal fluid flow

The deadweight will induce tension which normally has its maximum value at upper riser end.

The tension force is carried mainly by the outer armouring layers in the cross section.
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Offshore floating production systems are always exposed to environmental effects from wind,
waves, and current. Waves and current will give hydrodynamic loads directly on the riser,
but also loads induced by floater motions. Such forces give raise to variations in tension,
torque and curvature along the flexible riser, normally with maximum values at the upper end.
These variations will effect the plastic tubulars, outer armouring layers of the pipe structure

and in particular the bending stiffener if present.

Hoop stresses from external and internal pressure are mainly carried by the carcass and the

inner armouring layers of the flexible pipe structure, while axial stresses are mainly carried

by the outer armouring layers.

1.2.2 __ Current design practice

Current practice for design of flexible pipes is based on an estimated extreme response using

a safety format expressed by:

fe= (1.1)

< |

where f. is the characteristic load effect in terms of cross sectional response and r, is the
characteristic capacity of the cross section for example the yield stress of the tendon material
or the pipe critical radius of curvature. A safety factor schas been included in order to account
for all kind of uncertainties involved in the design process of flexible risers, such as

uncertainties in marine environment, loads, method of analysis, capacity etc..

The minimum safety factors recommended by guidelines issued by Det Norske Veritas (DNV)
for flexible pipes are given in Table 1.1, confer Mo and Torset [1.5].
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Table 1.1 DNV minimum safety factors for flexible pipes.

E-oad effect — Minimu: safety factor ]
Intemnal pressure 2.0
External hydrostatic pressure 1.5
“ Axial force, tensile/compression 2.0
Torsion 2.0
Minimum radius of curvature Static 1.25
h Dynamic 1.5 ”

The Guidelines also states that the service life of the armouring layers is influenced by wear,
fretting, fretting corrosion and fatigue and that these effects must be taken into account in the

design. Quantitative methods for predicting the service life are however not given.

The design principles for fatigue being reported by IFP/SINTEF in [1.6] and by Feret et. al.
[1.7] are used as basis for the design of the Coflexip pipes. These principles are based on
material aging of the plastic layers, wear in the armouring layers and non-exceedance of the
endurance limit stress for the steel material used in the armouring. The flexible pipe is thus
considered to fail, once the wear effect has reduced the thickness of the tendon cross section
to such extent that stresses due to a certain design load exceeds a given value. This seems to

be conservative, since a steel material normally can resist several fatigue cycles beyond the

endurance limit.

The limiting stress is further taken from a Goodman line in a Haig's diagram, which expresses

the endurance (or fatigue) limit stress as a function of the mean stress as shown in Figure 1.5.
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Figure 1.5 Haig’s diagram

1.2.3 _ Procedures for estimation of lifetime extreme global response

The characteristic load effect is most commonly specified as the characteristic largest response
maximum for a design lifetime of N, years. A design lifetime of 100 years is used in most
situations. Alternative procedures for estimating the lifetime extreme response are use of long

term statistics, the design storm and the design wave approach, confer Larsen et. al. [1.8].

Use of long term statistics

Use of long term statistics in a complete and consistent way is unrealistic due to the large
number of environmental parameters involved. In practice, a long term environmental
description will only be available for waves in terms of a scatter diagram expressing the joint

distribution of significant wave height H, and spectrum peak period 1;,. Realistic, but
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conservative values have to be selected for other parameters like wave direction, type of wave

spectrum, current profile and floater offset.

With these restrictions, the long term distribution of individual response maxima can be

expressed as a weightened sum of short term distributions. For further details confer [1.8] and

[1.9].

The long term approach is well established for linear structures, confer Haver [1.10].

Unfortunately, the situation is more complex for flexible risers because of important

nonlinearities.

Methods for long term response statistics of nonlinear structures have been developed by

Farnes [1.11] based on stochastic time domain analysis of a selected number of sea states and

use of interpolation/extrapolation techniques.

Design storm approach

So far, the design storm approach is most commonly used for prediction of lifetime extreme
response for offshore structures. A design storm can be defined by specifying values for all
environmental parameters in a short term environmental condition, and a specified duration

of the storm.

Respense time histories are produced by a stochastic time domain simulation and the lifetime
extreme responses are then estimated as the expected largest response maxima during the

design storm.

One important problem with this approach is, however, that different types of responses will
have their extreme values under different wave conditions, and that the duration of the design

storm is difficult to determine in a consistent way.

This problem has been investigated by Larsen and Passano [1.12] where a method for
selecting a design seastate based on an approximate long term distribution of the response was
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presented. This distribution can be established from simplified frequency domain analyses

using stochastic linearization of drag forces.

Design wave approach

The design wave approach means to estimate the lifetime extreme response by calculating the
load effects from selected regular waves. A wave height of 100 year return period is typically
used, and the wave period is given a reasonable variation, Selection of a regular wave to
represent the lifetime extreme condition is however most uncertain for dynamically sensitive

systems. This approach should therefore be used with care.

1.2.4 _ Procedures for fatigue estimation

By considering the experience with flexible risers so far, flexibles seem to have an adequate
resistance with respect to metal fatigue. This indicates that the wear approach proposed in
[1.6] is reasonable. The wear will be dominated by the contribution from long duration
moderate seastates, where structural nonlinearites will be insignificant. This allows for use of
long term statistics combined with frequency domain analyses including stochastic
linearization of nonlinear drag forces. This approach has been verified by Leira and Olufsen

[1.13).

Thus, flexible pipe design can be performed by a combination of frequency domain analyses

in order to describe the wear, and time domain simulations in order to describe the extreme

loads and curvatures.
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1.3 Response analysis techniques

1.3.1 _ Global response analysis techniques

The static and dynamic behaviour in terms of global response parameters of any flexible riser
system can be adequately analysed by a general purpose finite element method (FEM)

computer program provided that the following features are included:

- Three-dimensional formulation

- Large rotations and displacements

- Nonlinear static analysis

- Time domain dynamic analysis

- Regular/irregular wave loading and floater motion

- Axial, bending and torsional stiffness including a nonlinear material description

- Geometric stiffness, i.e. the lateral stiffness contribution from the current axial force
- Modelling of seabed contact

- Structural damping formulation

In the design process of flexible risers, the situation is often that the generality offered by a

general purpose FEM program is in conflict with the need for efficient and flexible

computations and user-friendliness.

To meet these demands, several FEM computer programs tailored to practical design of
flexible risers have been developed during the last years. A review of the most commonly

used programs is given by Larsen [1.14] and Kodaissi et. al. [1.15].

In order to further improve the efficiency of the analysis, considerations of the flexible riser

mechanics are valuable.
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Principles for selecting response model

Bending stiffeners at the Supports are crucial parts of flexible riser systems and must therefore

be included in the design analyses.

Flexible riser systems are known to have a significant global dynamic response. Experiences
from analyses of flexible riser systems have also shown that the global dynamic behaviour is
very little affected by the bending stiffener [1.4). The bending stiffener response is, however,
locally dominated by quasi-static effects, These observations are important when selecting
principles for efficient design analyses, and lead to the use of a combination of relative coarse
global models for dynamic analyses and local refined quasi-static models using results from

the global analyses as boundary conditions. Figure 1.6 illustrates the different models,

It has been shown by Sgdahl [1.4] that by using the end force and force angle as boundary
conditions, the combined model gives drastic reduction in computation time, without

significant loss of accuracy.

For further details regarding use of the local and global models confer [1.4].

1.3.2 Analysis of cross sections

Behaviour of flexible pipe cross sections with respect to stresses an slip between components
due to pressure, tension and torsion is relative well covered in the literature, confer [1.16]-

[1.20). Use can also be made of work done in comparable fields, e.g. reinforced cables [1.21]-

[1.28] and wire ropes [1.29].

Pressure, tension and torque give axisymmetric behaviour of all components in the flexible
pipe cross section allowing for a relatively simple mathematical description of the problem.
Curved bar elements can be used to simulate the armouring layers and thin shell tubular

elements can be used to describe the sheaths.
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Figure 1.6 Response models

The response of flexible pipes subjected to bending is less focused on. Lutchansky [1.30] and
Tan et. al. [1.31] allow axial movement of the helical reinforcing only. Feret and Bournazel
[1.17] suggest that the nonbonded helically wound tendon will follow the geodesic of the
curved cylinder. Leclair and Costello {1.32] use Love’s equations and an assumed wire

geometry to calculate the local and global response of wires in a bent rope.

The models presented in the literature so far are, however, based on the following

assumptions/simplifications:

The curvature is assumed to be constant which means that harmonic mathematical functions

can be used to represent the solution.

They do not consider the actual load effect induced by friction and contact forces on each

tendon as the tendons are assumed to be described by a predefined curve.

They do not consider the effect of geometric stiffening of each tendon due to tension.

1992
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All theories are based on analytical solutions which are unable to represent realistic

boundary conditions from end restraints.

At the end termination each tendon is anchored and in this area high tension and significant

curvature gradients will occur. It is thus clear that these models are inadequate for description

of stresses and slip at riser terminations.

The main purpose of the present work has therefore been to formulate mathematical models

that can describe stresses and slip of armouring tendons taking all the above mentioned effects

into account.

1.4 Scope of work

From the previous discussion it is found that well established procedures and models are
available for describing the global response of flexible risers, whereas little effort has been
made to establish models of similar accuracy for describing the cross section response during
bending. The overall purpose of this study has therefore been to improve existing methods for
analysis of flexible pipe armouring layers and to contribute towards a better understanding of
the behaviour of flexible pipes during bending. The aim is to create tools that can be used in
practical design. The study will further focus on nonbonded pipes and concentrate on the stress
and fatigue analysis of the end termination, i.e. in the bending stiffener region. The theories
developed are, however, intended to be as general as possible, thus allowing the developed
tools to be used for bonded pipes, umbilicals and other applications of flexible pipes as well.

A major part of this study deals with developing a theoretical model that is capable of
simulating the behaviour of individual tendons exposed to an arbitrary curvature distribution.

This local theoretical model is presented in Chapter 2.

In Chapter 3, the known fatigue mechanisms of nonbonded flexible pipes are discussed and

available test data on primary parameters presented.
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In Chapter 4, results are given from numerical studies using the local tendon model developed
in Chapter 2. The purpose of these studies has been to verify the model and to investigate
aspects of armouring tendon behaviour during bending. A study on the tendon behaviour in

a 8-inch flexible riser during a design storm is included.

Chapter 5 presents a summary of the existing models for intemal response analysis of flexible
pipes subject to both axisymmetric loads and bending. A comparison is made between the
results obtained from existing models and the results presented in Chapter 4 for the 8-inch
riser. Some observations made in flexible pipe tests and the theory developed in Chapter 2 are

further used in order to suggest improvements of existing models.

Chapter 6 focus on comparisons made between the developed model and results from

experimental work carried out on full-scale test specimens.
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2 A MODEL FOR THIN CURVED RODS SLIDING ON A CURVED
CIRCULAR SURFACE

2.1 Introduction

The purpose of this chapter is to formulate a finite element model that is capable of finding
stresses and slip during bending of flexible pipe armouring tendons taking all relevant effects

into account. Among such effects are:
Pretension due to axisymmetric loading
Arbitrary curvature distribution
Interaction between one armouring layer and the other layers.
Initial stress stiffness

End restraint effects

It is obvious that in order to take all the above effects into account a discretization technique
is needed. Further, in order to establish a model having the required capabilities, two Strategies

are possible:

Ph.D. Thesis Svein Seevik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
A Model for Thin Curved Rods sliding on a Curved Circular Surface 2.2

1. Make a complete model of all the elements in the flexible pipe structure and then apply

the external loads incrementally to obtain the true equilibrium state between internal and

external forces.

2. Make a simplified model assuming the curvature distribution to be given from a separate

design analysis and then consider each individual tendon.

For both strategies it is desirable to utilize the approach described in Sub-section 1.3.1 in order

to minimize the number of degrees of freedom involved.

Following the idea of the first approach and use of the finite element technique, a finite
element model for each individual tendon and tube layer is needed. As each layer interact with
the surrounding layers, a nonlinear description is required, i.e. updating the equilibrium state
in all elements at each load step. Numerical integration is further needed to calculate the
overall cross section stress resultant to be used in the equilibrium control against external
forces. The above described method would involve a large number of elements to model the

needed part of the pipe and thus require large computer resources.

The method developed in this work has consequently been based on the second approach,
where one individual tendon is analysed for a given curvature distribution along the pipe. This

is based on two fundamental assumptions:

1. The bending stiffness induced due to local tendon behaviour at end restraints is at least
one order of magnitude less than the effect of the total cross section bending stiffness. This

is considered to be a reasonable assumption along the bending stiffener.

2. Each tendon behave independent o&other tendons for the curvature range considered.

This assumption is considered reasonable as long as the curvature is smaller than the

critical curvature.

Accepting these assumptions it is possible to use results from differential geometry directly,

thus reducing the number of unknowns needed to describe the tendon behaviour.

2
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The finite element formulation has been based on the theory of thin curved rods. The earliest
work on this subject can be traced back to Kirchoff [2.1] who studied the linear theory of
slender curved rods. A brief survey on this theory is found in Love’s text [2.2]. However,
these references are limited to linear theory, while the nature of the present problem will lead

to significant nonlinearities.

The nonlinear theory of curved rods was developed by Hay [2.3] and later generalized by
Ericksen and Truesdell [2.4] and also Huang [2.5]. However, these formulations are not
convenient for nonlinear finite element implementation since they do not explicitly express
the nonlinear terms of the Green strain tensor. Washizu [2.6] used the Green strain tensor in
order to obtain strain and stress measures in the linear case, but without looking at
applications. The present work has been based on extending his formulation to include large

displacements but small strains, and then use this theory to develop a tailor made curved beam

element.

In the following, the term rod will be used vhen referring to one single armouring tendon.

The term pipe further means the surrounding flexible pipe structure.

2.2 Fundamental concepts and assumptions

2.2.1 _ Coordinate systems. Concepts from differential geometry

The initial undeformed configuration of the rod’s centre line is in the following assumed to
be represented by a helix which is supported by a straight circular cylinder. The centre line
of each rod therefore represent a curve on the cylinder surface making an angle o with the
length coordinate w as shown in Figure 2.1. The supporting cylinder surface can be
represented by the radius R and surface coordinates v and w. The coordinate curves on the
surface are represented by setting v=const. and w=const, At the pipe centre line there is a
fixed Cartesian coordinate system with axes Z' and unit vectors E, In the undeformed

configuration or when the pipe is exposed to axisymmetric loading without deformations of
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the cylinder, the Cartesian coordinates of a point on the surface can be expressed by

cylindrical coordinates as:

Z! =y @2.1)
22 = R cosv 2.2)
Z3 = R sinv (2.3)

When the cylinder is bent to a constant radius P, it is formed into a toroid, which may be
described in spherical coordinates. The Cartesian coordinates of a point on the surface can be

expressed by spherical coordinates as:

Z' = (p - R cosv ) sing (2.4)
Z =p -(p-Rcosw) cost (2.5)
Z? = R sinv (2.6)

Figure 2.1 Definition of pipe centre line coordinate system and basic quantities

The cross section of the rod may in general be arbitrarily oriented relative to the centre line.
The restraint is, however, introduced that the rod cross section principal axes are fixed to the
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surface normal as shown in Figure 2.2. This restraint has been shown in Appendix A to be
fulfilled when the rod is exposed to reasonably high tensile stresses, as during normal load
condition of a flexible pipe. The fact that one layer is restrained by the next layer should,
however, make this assumption reasonable even if compression occurs. It will be shown later

that this assumption eliminates the need for a complete three-dimensional description of the

rod .

ng - surface normal

Figure 2.2 Orientation of cross section principal axes

By assuming that the position vector R, describing any point on the centre line of the rod is
a vector function of the arc length coordinate X/ and by using concepts from differential
geometry, a system of local orthonormal axes is constructed at an arbitrary point P, having
unit base vectors ; as shown in Figure 2.3 a. These unit vectors are called the tangent, normal
and binormal vectors and the associated coordinate axes represent the principal torsion-flexure

axes along the curve. The vectors are determined by:

I
Iy =Ry, =2, E, 27)
1 1 1
I, = _R =_Z, E (2.8)
2= < Ron = =2, E4
1 I
Iy =Ix 1y = — ey 2, 2, Eg 2.9)
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where K represents the principal curvature and ek 1s the permutation symbol. The Seret-
Frenet differential formula [2.7] is introdvced to express the rotation of the local unit triad

along an infinitesimal distance dX’ :

rdl, .
ax’
‘”2
ax’
dly
X! |

0 x oflh
-k 0 1 12
0 -t 0 I

(2.10)

It is noted that if these differentiations were made with respect to the fixed coordinate system
Z!, the derivation would generally involve Christoffel symbols of second kind [2.8). However,
as long as the differentiations are made with respect to the arc length coordinate X/, these

contributions are given directly from differential geometry.

The torsion t and the principal curvature may be determined from the vectors directly as:

dl
t=l - 2 @11

k=l L 2.12)

which for a rod being wound into a circular helix gives:

T = sinet coso (2.13)
R
-2
« = Sin‘a (2.14)
R
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2.7

where R is the layer radius.

23 "

(b) Gi -systems relative onientation to Ii

Figure 2.3 Local curve coordinate systems

A new unit triad is introduced, defined by the base vectors G, and coordinate axes X’. This
is oriented in such a way that G, is paraliel to I 1 While G, is directed along the inwards
surface normal and is thus fixed to the cross section principal axes. The binormal vector G,
is determined by the orthonormality condition. From this definition of axes it is seen that the
I rtriad coincide with the G-triad of the cross section principal axes, only if the curve normal

vector is parallel to the surface normal. The direction of the cross section axes may thus in

general differ from the curve principal torsion-flexure axes. The angle @ is therefore

introduced to define the orientation of the G, system relative to the / ;1 System as shown in
Figure 2.3 b. By defining the convention that the curvature components are positive when they

give a positive rotation about the respective axes with increasing X and using the right hand

rule, a generalized Seret-Frenet formula is obtained as:
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dG,
|
dx 0 K3 -Kz Gl
dG,
— = "’K3 0 Kl Gz (2']5)
1
dX o g
K, -K
-dXI-J
where:
K =T+ dw (2.16)
dx!
K, = K sin® (2.17)
K3 = K COS® (2.18)

K, and k; represent the components of the principal curvature x in the (X’,X") and (Xl ,XZ)
planes respectively. T represents the geometric torsion of the centre line curve of the rod and
can be found from Eq.(2.11) directly. The second term of Eq.(2.16) represents the torsion of

the cross section, induced by the fact that the cross section rotate relative to the torsion-flexure

axes, and is determined by:

-1%2 (2.19)

which by differentiation with respect to the arc length coordinate x! gives:

K, |K3-KK:
do _ %2,1%37%2k3 (2.20)

1 2,2
dX Ky +K;3

The torsion and curvature components may, however, also be obtained directly from the base

vectors G, (see Eq.(2.15)) as:
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. 96, 221)
dx!
. 96, 2.22)
dx!
. 96, 223)
dx!

G,

3
"

_63

J
"

G,

Since G, coincide with I,, it is concluded from Eq.(2.8) that the second term on the right hand
side of Eq.(2.22) will represent the curve normal vector. Thus, since G; is based on the
surface normal vector G,, transverse curvature will only occur when the surface normal does
not coincide with the curve normal, i.e. @ # 0. In the next sub-section curves on a circular

surface that have no transverse curvature will be described.

2.2.2 _ The geodesic

It is first noted that curves between two points in a two-dimensional plane and having
transverse curvature can possibly not represent a minimum in arc length between the two
points since they are not straight lines. Mathematically a minimum curve on a surface can be

found by using the Lagrangian multiplier technique as shown in [2.9):

xl
0

where A is the Lagrange multiplier. The above means:
Find the curve having minimum length under the constraint that the curve lays on the surface:

$(Z2,2%23)=9 (2.25)

This gives the following three differential equations:
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zh, +2 35 =0 (2.26)

az!

22,235 -0 (227)
' az?

Z, + 235 =0 (228)
' az3

From Eq.(2.8), it is seen that the first term in Eqs.(2.26)-(2.28) express the normal vector
components of the curve. The second term represents the surface gradient, i.e. the surface
normal vector components. Thus, if a minimum curve exists, the normal vector is parallel to
the surface normal, and the curve has no transverse curvature. Between two sufficiently close
points on the surface there is only one such curve, called the geodesic between the two points

[2.7]. Along the geodesic, the G, and I, system coincide i.e ® = 0, and the Seret-Frenet
formula of Eq.(2.15) takes the form of Eq.(2.10).

It is easily shown that for the straight cylinder, the circular helix represents a geodesic. When
the cylinder is bent, this will however change. When the pipe is bent by a constant radius, an
approximate analytical description of the geodesic is found by using Egs.(2.26)-(2.28) and the
coordinate transformation defined by Egs.(2.4)-(2.6). This gives a first order differential
equation in the spherical coordinate ¢ (see Appendix A). The displacements relative to the
supporting surface may be expressed as a function of R/p from the first term in a Taylor series
expansion. The solution shows that both longitudinal and transverse slip relative to the
supporting surface are needed in order to go towards the geodesic (confer Figure 2.4). This
process also induces twist and changes in normal curvature along the curve. It has been shown
by independent derivation (see Appendix A), that the analytical expressions describing the
geodesic are identical to the results presented by Feret and Bournazel [1.17]. The

displacements needed along the local curvilinear axes are obtained as:
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2 2
uy = L COS & sinv (2.29)
p sina
2 2 2.30
u=_R_(23ina+c95a)sinv (230)
ptano sina

The twist and normal curvature increment can be derived from Eq.(2.21) and Eq.(2.23) :

Ak, = = sin cosa ( | 3 ) cosy (2.31)
p sin%a
2
Aky = - 3550 (oo (2.32)

The physical interpretation of the solution is that in order to eliminate the large part of
straining of the rod, a slip occur from the compressive side of the pipe to the tensile side.

However, in order to eliminate the transverse curvature a transverse slip is additionally

required as shown in Figure 2.4.

Figure 2.4 Slip towards the geodesic
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The driving mechanism for the transverse movement of the rod towards the geodesic will be
the bending moment about the X-axis created by transverse curvature and the transverse
component induced by tension and transverse curvature in combination, the latter being the
dominant one when the flexible pipe is in operation. Thus, by means of simple equilibrium
consideration as visualized in Figure 2.5, transverse movements can only occur when the

friction coefficient is less than:

ns 2 (2.33)
K

3

The above equation, however, excludes consideration of interaction forces induced by
surrounding layers and also the fact that the direction and value of the friction force will be
controlled by coupling between the longitudinal and transverse displacements. Eq.(2.33)
applies therefore only for outer armouring layer tendons not exposed to external pressure and

the result will only represent an approximation.

The driving force inducing longitudinal movement will be the build-up of tensile and

compressive stresses on the tensile and compressive sides of the pipe.

u.xa .Ql

Q,

Figure 2.5 Transverse equilibrium consideration

Ph.D. Thesis Svein Saevik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
A Model for Thin Curved Rods sliding on a Curved Circular Surface 2.13

2.2.3  Limit curves

It is obvious that both friction and cross section forces induced by the rod from twist and
curvature increments will act against the movement of the rod towards the geodesic. It is
convenient to define two ultimate limit curves. These are the geodesic to which the rod would
naturally move if no friction or cross section restraint forces/moments occured, and the
loxodromic curve which describes the rod under infinite friction and hence no slip. The
loxodromic curve has the property that it intersects the coordinate curves of the surface by the
constant initial lay angle. It is noted that axial strains in the rod may be eliminated. along the
loxodromic curve path, simply by feeding rod from the compressive side to the tensile side

of the pipe. In order to eliminate the transverse curvature, however, an additional transverse

movement is needed towards the geodesic.

The position of the loxodromic curve is fixed in the way that no transverse or longitudinal slip
occur relative to the supporting surface. It is shown in Sub-section 2.4.6 that for a loxodromic
curve on a toroid, the longitudinal strain, twist and curvature increments may be expressed on
an explicit form. The parameters involved in the resulting equations are the lay angle, layer
radius and the pipe global radius of curvature. Further, it is well known from beam theory that
the curvature represents the highest order differential needed to describe the global pipe
behaviour. Thus, by describing an arbitrarily curved circular surface by a finite number of
toroids, each having constant curvature, it is possible to calculate the distribution of
longitudinal straining, twist and curvature increments along the loxodromic curve of the
surface. The basic idea utilized in the present formulation is based on first assuming that the
centre line of the rod is directed along the loxodromic curve, then calculate the corresponding
cross section forces and at last allow the rod to slide towards equilibrium under the action of
equilibrium forces. In order to perform this operation, consistent strain and stress relations
that connect one equilibrium state to another are needed. These are developed in Sections 2.4
and 2.5, together with closed form expressions for the longitudinal straining, twist and

curvature increments along the loxodromic curve segments.
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2.2.4 Kinematic restraints

In Sub-section 2.2.1 the rod cross section was assumed to be fixed to the surface normal. In
addition the displacements of the supporting surface along the surface normal must be small.
This means that the rod is forced to slide along the curvilinear axes X! and X° of the
supporting cylinder surface as shown in Figure 2.6, thus eliminating the need for a full three-

dimensional description.

Figure 2.6 Restraint of the curvilinear plane

In order to ensure that the displacements occur along the curvilinear axes only, a restraint on

the rotation 6, of the rod about the X! axis is introduced:
9, = = K' u3 + Kl Uy (2-34)

where k, is the curvature along the transverse direction. This curvature can be obtained by the

equation of Euler [2.7]:
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2

K, = cos’a Kk, + sin’

a K, (2.35)
where K, and K. represent the principal curvatures in the circumferential and longitudinal

directions of the surface.

2.3 Equilibrium equations

Figure 2.7 shows an infinitesimal element of the curved rod. Along the centre line there is a
local coordinate system with axes X’ and base vectors G,. These axes are fixed to the principal
axes of the rod cross section. At the first end of the element there are stress resultants @, and

M. These have changed to Qp+dQ; and M+dM; at the second end.

Figure 2.7 Curved infinitesimal beam element
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Since the element is curved the unit coordinate system have similarly changed from G; to
G+dG,. Along the element there are distributed loads and moments g; and m;. Consideration

of force and moment equilibrium give:

0 dG, 0 dG, dG G c c
1 — * & + +q U +q, Uy +q3 03
dx! dx! ! (2.36)
d d d
dx! dx! dx!
dG, dG, dG G G G. + 0, G. - 0. G
1 My +M3 *m G +tmy Gy +my Gy v 6y -3 6,
dx! dx! dx! (2.37)
dM, dM, dM,
. dx! ’ ax! Gz+dx' €570

The generalized Seret-Frenet formula from Eq.(2.15) is introduced and the following six

coupled equilibrium equations are obtained:

do,
dx’
dQ,
rd
dQ,
dax'
M,
dx’
dM,
dx’
dM,
dx |

Ky Q) + %X 03 +q, =0 (2.38)

+

K30 -% @3 +¢q,=0 (2.39)
K0 v 0 vg3=0 (2.40)

- K3 M2 + K2 M3 + ml = 0 (2.4])

+

-K2M1+K1M2+Q2+M3=0 (2.43)

When the pipe is exposed to axisymmetric loading, simplifications can be made to solve these
equations (see Chapter 5). For bending, analytical solutions may be obtained by assuming
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constant bending radius [ 1.32]. For arbitrary curvature distribution, however, the finite element

approach is needed, conveniently formulated through the Principle of Virtual Displacements.

2.4 Strain and deformation

2.4.1  Continuum concept

The adoption of the continuum concept implies that the molecular structure is disregarded. The
material is assumed to be continuously distributed throughout its volume and to completely
fill the space it occupies. This simplification means that all mathematical functions entering

the theory are piecewise continuous in space and time.

2.4.2 _ Description of motion

The material particles of the rod occupy a region B having a volume V) and a surface S in
the initial state. A curvilinear coordinate system XX with base vectors Gy is attached to each
material particle P, along the centre line. The notation for direction of axes is based on
concepts from differential geometry, assuming that the position vector R, extending from the
origo of a Cartesian system ZX to each material particle, is a vector function of the arc length
coordinate X'. The position vector of an arbitrary material particle P in the cross section of

the rod can now be determined by:

R =R, + X2 G, + X3 G, (2.44)

After deformation the volume V,, and surface S, goes into a region b as shown in Figure 2.8
consisting of a spatial volume V and its surface S. The particle P, is now located at Py At
Py there is a curvilinear coordinate system #* with in the general case deformed base vectors
8- The vector r, is the position vector of p,. r is the corresponding posiﬁ-on vector of p and
is determined by:
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rery+ x2 g, +x g, (2.45)

Basically, there are two descriptions of motions in common use. These are the material
description and the spatial description. In the material or Lagrangian description the
independent variables are the particle P and time ¢. The coordinates in the reference state, XK,
are called material or Lagrangian coordinates. In the spatial or Euler description attention is
fixed to a given region in space instead of a particle in a continuum. Independent variables
are the present time ¢ and the present position x of a particle that occupied the point X at time

t=0. The coordinates x* in the current configuration are called spatial or Eulerian coordinates.

The material description is the most convenient and most frequently used description for

continuums, and is therefore used as basis for this work.
The motion can be expressed in the Lagrangian description by:

x=xXp, xk=xkxKp (2.46)

Figure 2.8 Description of motion
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2.43 _Green strain tensor in local curvilinear system

In the reference configuration an infinitesimal vector dR connecting two neighbouring material

particles at P can be expressed as:

dR = ?’:’)’{R_de" = G pdx X (2.47)

In the deformed configuration the vector dr at p connecting the same material points, can be

expressed by:
dr = O dr* = g dik (2.48)
axk

Gy and g, are the (covariant) base vectors at XK and o, respectively. As Gy is defined
through the relations given from differential geometry it represents an orthonormal system. It
is in the following assumed that the deformations are so small that the change in surface and
volume of the rod can be neglected. This means that the deformation of the base vectors G,
in the radial direction and G; in the transverse direction are insignificant. Thus only
longitudinal strains may influence base vector length. It is also assumed that the shear
deformations of the thin and slender rod are sufficiently small to ensure that 8, is orthogonal.

The contravariant metric tensors are expressed as:

Gt = gX. Gt (2.49)

ko_ Lk, ol (2.50)

The corresponding covariant metric tensors are determined by:
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G GM = 8¢ 2.51)

g 8™ = & (2.52)

where 8:' represents the Kroenecker delta, being 1 for equal indices and 0 else. Gy is the

covariant components of the metric tensor. The covariant components are given by:

- .
(l+X3)c2—X2|<3)2+(}(3|c|)2+(X2K,)2 -X3|c, lec,
GKL bd "XSKI l 0 (2.53)
2
and the determinant, G as:
(2.54)

G=(1+X%, - X%;)?

Let dL be the length between two material points in the undeformed configuration and d! be
the length between them in the deformed configuration. The difference of the squares of the
line elements, containing the same material particles in the initial and deformed configuration,
implies a length change due to deformation. If dI® = dL? for any pair of neighbouring material
particles, the deformation has not changed the distance of the pair. The body has undergone
a rigid body displacement if dI? = dL? for all material particles. Thus, the difference is a
measure of the deformation produced during a displacement. For an infinitesimal element

measured in the local curvilinear triad GK

di® - dL? = dr - dr - dR  dR = 2Eg;dX ¥dx * (2.55)

where E,;L represents the Green's strain tensor defined in the local curvilinear system. The

component form is given by:
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. l, or or dR OR ]
Eg; = —( . - E )= —(8y - Ggr ) (2.56)
KL kl KL
2 oxXoxt axKoxt 2

The components of the Green strain tensor in the local curvilinear system is now found by

introducing:

r=R +u (2.57)

and the Seret-Frenet formula from Eq.(2.15)

2.44  Transformation to local Cartesian coordinate system

Having in mind that the constitutive relations normally are given in Cartesian coordinates it
is necessary to transform the curvilinear strain tensor to a Cartesian strain tensor. A local
Cartesian coordinate system is therefore introduced with coordinate axes ¥ and unit vectors
Jp, it's direction choosen to coincide with that of the Grtriad. Then the following

transformation is valid [2.8):

oxX oxL _.
Ey = 2 2 By (2.58)
or! 3y

where Ej; represents the Green strain tensor components in the local Cartesian coordinate

system, and
x* =GMM (g, . 9 (2.59)
or! ox M
L
X LGNy, Oy (2.60)
Y’ oxV

It is noted that the same transformation equations are valid between stresses in the two
coordinate systems
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2.4.5  Description of volume

Since the strains considered in the present theory are assumed to be small, there will be no
significant volume or area change during deformation. Thus the integrations to be performed
in the virtual work equations can be performed with reference to the initial volume and area.

However, the fact that the theory is developed in a curvilinear system, is considered.

The volume of an infinitesimal parallelepiped enclosed by the six surfaces X! = constant and

X/ +dx! = constant, as shown in Figure 2.9, is found by using the triple vector product as:

l g, - 2 3
dVy, = dX' Gy - (dX” Gy x dX° Gy) 261)

VG dx' dx? dx3

x3

x2

Figure 2.9 Infinitesimal volume element

2.4.6 _ Strain and curvatures along the loxodromic curve

For the loxodromic surface curve on a constantly curved pipe with global radius p, the
longitudinal component of the Green strain tensor is determined by Eq.(2.56) (see Appendix
B) as:
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1
2

2 2 (2.62)

El' ,n = —(5) cosZa cosy + (ﬁ)2 €OsS“0L Ccos“v
Y P

This strain imply that the length of g has been changed compared to G, and the deformed
triad is no longer orthonormal. For later convenience it is desirable to express the curvature
components with reference to the initial undeformed configuration. The following length

correction is therefore introduced before determination of the curvature components:

G, = - (2.63)

where e,‘ ? is the component of natural longitudinal strain along the centre line referred to the

local curvilinear coordinate system. In Sub-section 2.2.2 it was stated that there is only one
curve between two sufficiently close points on a surface where the curve normal vector
coincide with the surface normal, namely the geodesic, which also gave the shortest length
between the two points. It was further shown that in order to follow such a curve during
bending, a certain slip was required relative to a virtual restrained line intersecting the surface
coordinate curves by a constant angle a. Thus, for the loxodromic curve, the curve normal

will not be parallel to the surface normal, which again imply that transverse curvature will

occur.

By using Egs.(2.21)-(2.23), the following results are obtained for the twist and curvature

increments (sece Appendix B):

AKl = M cosza cosv (2.64)

_cosa (2.65)

(1 + sin’oL ) siny

Ak,

2
COS® cos?a cosv (2.66)
p

AK3="
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It is seen that the twist is purely due to the strain correction given in Eq.(2.63)

Further, by double differentiation of the transverse displacement of Eq.(2.30) with respect to
the arc length coordinate X!, the same result as Eq.(2.65) is obtained. This means that the
transverse curvature is eliminated by the sideways displacement needed to reach the geodesic,

which confirms the physical interpretation of the transverse slip given in Sub-section 2.2.2.

The transverse curvature is caused by two effects. The first effect, reflected in the first term
of Eq.(2.65) is due to the fact that the global curvature can be decomposed directly into a line
segment with an angle a to the longitudinal pipe axis. The other term is due to the straining
of the supporting toroid, giving strain induced displacement not only in the longitudinal

direction but also in the transverse direction.
The change in normal curvature is both due to straining of the rod and global curvature.

By introducing Eq.(2.14), Eq.(2.32) and Eq.(2.65) in Eq.(2.20) and then add the result obtained
from Eq.(2.11), the final result will be according to Eq.(2.16). This result is further found to
be the same as obtained by using the G triad directly in Eq.(2.21). This confirms the
statement made regarding the physical interpretation of Eq.(2.16) given in Sub-section 2.2.1

(see Appendix B).

2.5 Strain and stress relations

2.5.1 __The Green strain tensor in_the local Cartesian coordinate system

In the following it is assumed that the equilibrium state of the rod can be described in terms

of axial strains, bending and twist. Thus the deformation of an arbitrary point P in the rod can

be expressed as:
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u = “lG| + usz + u3G3 (2.67)
uy = u(X") + X30,x") - x20,x") + B Hex2.x3) (2.68)
U = uy(X') - X30,(x" (2.69)
uy = ug(X') + X%0,(x") (2.70)

where u; is the displacement components along the respective local curvilinear axes and 6, the
rotation components about the respective axes. (p(Xz.X:’) represents the warping function of
Saint-Venant’s torsion, fulfilling the boundary conditions set by the cross section shape.
According to the Saint-Venant's theory for straight beams exposed to a constant torque, the
twist B is equal to 0 1,1 = const. However, in this case the twist expression is not obvious, and

B is therefore initially assumed to be an arbitrary function of X/.

By using Eq.(2.15) and Egs.(2.56-2.60) and neglecting insignificant 2nd order terms, the Green

strain tensor measured in the local Cartesian coordinate system is found as:

GE)) = VG (g,+X’w)-Xwy+gP  +k,BIX30 ,-X?p ;) + %ef . _;sg . _;.e§ Q@71

2/G E, =e, - 0; - X0, + B WG ¢, + x30] (2.72)
2/G Ejy = ey + 6, + X0, + B VG 93 - K9] 273)
where:

e = U, - Kyuy + Ky (2.74)
€2 = “3.1 * Ky - Ky (275)
€3 = “g.l - ) + Ky (2.76)
0, =0,, - K30, + K,0, (2.77)
W, =0, + x50, - x,65 (2.78)

(2.79)

@3 =83 - K8, + K6,
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2.5.2 Constitutive relation in_the Cartesian system

For an isotropic elastic material, the Hooke’s material law is assumed:

o' = C, ¢ (2.80)
o3 =2C ¢4 (2.81)
(2.82)

12
c“ =2C; g,

C, is the Young’s modulus of elasticity and C, is the shear modulus. 622,633 are assumed to
be constants given from axisymmetric analyses and 623 are set to zero as it is assumed that

there is no restraint present in the transverse direction and that the rod is thin.

2.5.3  Stress relations obtained by the Principle of Virtual Displacements

Variation techniques play an important role in continuum mechanics. One of the most
frequently used, is the Principle of Virtual Displacement, or the Principle of Virtual Work.
The principle is not a real energy principle, since the computed work is a fictious work done
by a set of (statically admissible) forces and stresses on a set of kinematically admissible
displacements and strains. The stresses and displacements need not be the actual distribution
in the deformed body, and they may be independently prescribed. The major point is,
however, to in average fulfill the differential equation for the problem by weight function
multiplication and volume integration, instead of finding the exact solution. By prescribing that
the external work equals the internal work it is provided that the error made by the assumed
weight function in the external work equation equals the corresponding error coming from the
internal work equation. If the weight functions are selected such that the appropriate boundary
conditions are fulfilled, the error in the external work equation is eliminated and a state of
integrated equilibrium is obtained. This means that in average for the total volume of
integration, the error is zero. However, at an arbitrary point within the volume, the differential
equation is not necessarily fulfilled.

1992
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Excluding volume forces, the principle of virtual work in an arbitrary equilibrium state reads:

fvczae VG dx'dx%dx3 - fs ¢-5udS = 0 (2.83)

In order to obtain the stress relations it is further assumed that the difference between two
neighbouring equilibrium states is sufficiently small to neglect the second order terms of

Eq.(2.71). The following assumptions are further made:

L VG =1 (2.84)

2. (p(xz’x:;) = _(p(_xz’x:;) - -(p(XZ,-X3) (2.85)

The first assumption imply that the rod is thin in the sense that the cross section width is
small compared to the characteristic curvature. For the present application of the theory this
gives by use of Eq.(2.54) a typical deviation less than 0.5 % from the exact solution,

The second assumption states that only double symmetric cross sections are considered.
By making use of Eqgs.(2.71)-(2.79), and introducing €, &,, €, 0, @y, 3 and B as virtual

quantities together with the material laws of Eqs.(2.80)-(2.82), the internal virtual work is

obtained as:

! ! l
W, = [0,8e,ax, + c,Dx, [e,8wyaxt - Cal o, 800,x’
0 0 0
! l
+ fQ28(82~93)dX b fQ35(€3+92)dX 1 (2.86)
0 0

l l l
+ fM,&o,dX' * sz&nde' + fM35w3dX'
0 0 0
with stress resultants defined by:

2
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0, = C/Ae; + C,Dx B (2.87)
0, = ClA(e,-6,) (2.88)
0y = ClA(e;+0,) (2.89)
My = CJp + Cl,(w-B) (2.90)
M, = C lm, (2.91)
My = Colz0, (2.92)

Q, represents the force along axes Y, and M, the moments acting about the respective axes
Y. A is the area of the cross section, D, T, I, I, are torsion constants defined in the next
section and /,, I; are inertia moments about the respective cross section axes.

In Sub-section 2.4.3 the assumption of neglecting shear deformations was stated. From
Eq.(2.88) and Eq.(2.89) it is seen that this assumption gives:

92 = ‘83 (293)

0 = ¢ (2.94)

Thus the rotations about the X?- and X’-axes are uniquely defined by the centre line
displacement field only. 0, and Q; have to be found from equilibrium considerations and can
not be found from the displacement state. This is a basic property of traditional Euler-

Bernoulli beam theory.

The above also imply that the two last nonlinear terms of Eq.(2.71) represents the axial strains
of the centre line due to centre line rotation, which is in accordance with the results obtained

from nonlinear theory of straight beams [2.10].

An important observation is that by introducing the kinematic restraint of Eq.(2.34) together
with the restraints of Eq.(2.93) and Eq.(2.94), all rotations can be described by means of the
centre line displacement field of the rod alone.
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By regarding the definitions in Eqs.(2.74)-(2.79) and Eqs.(2.87)-(2.94), the physical

interpretation of the strain expressions are :

€, represents the longitudinal straining of the centre line due to longitudinal, radial and

transverse displacements,
€, and ¢, represent the rotation of the centre line.

®, is the effective torsion deformation, i.e. twist corrected for the effect of curvatures along

x!,

@, is the effective transverse curvature deformation corrected for the effect of torsion and

curvature along X!,

©; is the effective normal curvature deformation corrected for the effect of torsion and

curvature along bl

It is seen that by setting ®; equal to P in Eq.(2.90), the well known relation between the twist
and the torsion constant for cylindrical shafts having constant twist and without end section

warping restraint, is obtained. Since the armouring tendons are long and slender the

assumption is introduced that:

B =0 (2.95)

Based on the above interpretations, the following relations for the incremental change in twist

and curvature deformations between two equilibrium states are obtained:

Ax; = Aw, (2.96)

It has been verified that by adding the increments in twist and curvature obtained by inserting
the displacements from Eq.(2.29) and Eq.(2.30) for the geodesic into Egs.(2.77)-(2.79), to the
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curvature increments obtained by Eq.(2.31) and Eq.(2.32), the same result in total incremental
twist and curvature is obtained as the result of Eqs.(2.64)-(2.66) (sce Appendix B). This shows
that the expressions for curvature and twist increments are capable of describing the
kinematics of the problem correctly, and that the physical interpretation of them is correctly

understood.

2.6 __Incremental form of the Principle of Virtual Displacements

In finite element analysis of large deformation pioblems in solid mechanics, there are two
different formulations widely used. These are the Total Lagrangian (TL) and the Updated
Lagrangian (UL) formulations. The difference between them is the choice of reference
configuration. In a TL formulation, all static and kinematic variables are referred back to the
initial (€% configuration, while in the UL formulation these are referred to the last obtained
equilibrium configuration, i.e. the current (C") configuration. Both formulations have been
successfully used in many nonlinear problems, see e.g. [2.11}-[2.18]. Note that the

formulations are theoretically equivalent if no approximations are introduced.

Several variations of the TL- and UL-formulations have been developed to improve the
computational efficiency. The basic idea is to separate the rigid body motion from the local
or relative deformation of the element. This is done by attaching a local coordinate system to
the element and letting it continuously translate and rotate with the element during
deformation. The nonlinearities arising from large displacements can be separated from the
nonlinearities within the element. Several terms have been introduced to lable various

formulations. Examples of names are 'Co-rotational formulation’ and ’Co-rotated ghost

reference’ formulation.

In the Total Lagrange formulation, the kinematic and static quantities have to be referred
back to the initial configuration. Since one basic idea of the present formulation is to operate
on the supporting pipe surface, the initial coordinate system would be defined from the initial
circular helix. As the supporting pipe structure is deformed, the only realization of the initial

coordinate system on the new surface must be based on the corresponding geodesic, thus
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involving deformation of the reference system itself. This excludes use of the Total-
Lagrangian formulation in this case, leaving the UL and Co-rotated formulations as the

remaining alternatives.

The present work has been based on the UL-formulation. In the UL-formulation the last
obtained reference configuration is adequately described by the current torsion and curvatures.
Since the loads are obtained on the basis of closed form expressions given as functions of the
global curvature distribution, and the quantities of interest are rod stresses and displacements,
there is no need for a fixed coordinate system. This means that for the present formulation,

no congruence transformations are needed.

Figure 2.10 Reference systems in two neighbouring configurations

It is noted that since the derivation of the prescribed strain, torsion and curvatures have been
based on a constant length of the tangential base vector, the present formulation represent a
slight modification to the traditional UL-formulation. The effect of this modification is,

however, small as the resulting strains are small in this case.

In the Updated Lagrangian formulation, the equation of incremental stiffness is obtained by
making use of Eq.(2.83) and study the virtual work in an infinitesimal increment A as follows:
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fVC:(E+AE):6(e+AE)dV - fs(zw)-auds =0 (2.97)

By subtracting Eq.(2.83) from Eq.(2.97), neglecting higher order terms in A and by assuming
that the difference between two neighbouring equilibrium states is small, the following

expression is obtained:

fvc:Ae:aedv . fvozaAEdv - fs AtdS = 0 (2.98)
Eq.(2.98) gives the incremental equilibrium equation to be used as basis for the stiffness

matrix. The first term gives the material stiffness matrix, whereas the second term gives the

geometric or more correctly, the initial stress stiffness matrix. These two internal work terms

are determined as:

l { l
W = CoA [Ae Be,dX, + CoDx, f(Ax B, +he BwdX! - C,T [ax, | 80X’
0 0 0
l
+ (C, + CoKiK) - CD + T + CKy) [Ax Beo,ax’! (2.99)
0

l l
+ Coly [ArBwpdX! + Col [AxBwydX!
0 0

l
WE = 0, [(Be e, + Aeybe, + AegBe)dx! (2.100)
0
where D, T, K and K, are cross section constants determined by:
D =1, - I, = Lvly - [0,X°-0 X2 X?X2+X°X’ds (2.101)
K, = fs (X3¢ ,-X29 5)%dS (2.102)
re= fs ¢%dS (2.103)
1992
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Ky = J:g‘P.zz +9 5°dS
The warping function for rectangular cross sections reads (2.2]:

2 iy SRl
¢ = -X°X% + YY" . 5 sin(
T (2n+1)" coshy ;;ln:a)

2n+] IXZ)

where the different parameters are defined in Figure 2.11].

(I - #

A

Figure 2.11 Definition of cross section parameters

(2.104)

(2.105)

The cross section constants defined by Egs.(2.101)-(2.104) have been obtained by using the
warping function defined by Eq.(2.105) and numerical integration. By investigating the
different contributions to the fourth term of Eq.(2.99) it was found that the total sum was

approximately equal to CJ,, which is the well known torsion constant.

The third integral of Eq.(2.99) gives further an asymmetric contribution to the material

stiffness matrix. This contribution is however small and is neglected in order to obtain

symmetric equations. The term is, however, included in the total virtual work equation and

is thus being part of the equilibrium iterations.
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2.7 Finite element implementation

2.7.1 Finite element discretization

The restraint introduced in Sub-section 2.2.4 imply that the rod is forced to slide on the
supporting surface. This means that all deformations are going to take place on the supporting
pipe surface. Consequently there should be three degrees of freedom at each nodal point as

in Cartesian coordinates.

There are, however, basically three translation and three rotation degrees of freedom. In order
to describe the transverse displacement state on the surface, two independent parameters are
needed in each nodal point. The restraint introduced in Sub-section 2.2.4 on the rotation about
the X’-axis ensure that the rotation about the surface normal in one node of an element gives
transverse displacement along the supporting surface only. Introducing the translation along
the X-axis, the rotation about the X-axis and the translation along the X?-axis thus make the
difference between the present formulation and a two-dimensional description. In order to
implement the rod/pipe interaction as far as contact forces are concerned, the translation
degree of freedom along the X2-axis is needed. The component of rotation about X° can,
however, be neglected since the radial displacement is assumed to be small, i.e. the form of
the supporting cylinder will remain smooth without undulations throughout subsequent
deformation. Thus, the rotation about the X’-axis is given by means of the longitudinal and

transverse displacements through Eq.(2.94) and Eq.(2.75).
This gives in total 4 degrees of freedom per node or 8 degrees of freedom per element.

In the transverse X° direction, standard beam element representation based on cubic
interpolation functions has been used. In the axial direction cubic interpolation has been used
instead of the conventional linear interpolation both in order to meet the requirements set by
the strong coupling observed between the axial strain and the transverse displacements

reflected in Eqs.(2.74)-(2.79) and also to take into account the strain distribution induced along
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Figure 2.12 Eight (Ten) degree of freedom curved beam element

the element by friction forces. The two internal degrees of freedom are, however, eliminated
by static condensation prior to the merging process (see Figure 2.12). In the radial direction

linear interpolation has been used.

The displacement field u? along the centre line can be expressed by the nodal degrees of
freedom and non-dimensional length coordinate £ and element length /. On matrix form this

can be expressed as:

=Ny (2.106)

or in component form:

u)®) = N/ v; (2.107)

u? is a 3x1 matrix of displacement components along the centre line and v are a nx/ matrix
of the n element degrees of freedom. N is a 3xn matrix of interpolation functions. The

transposed N matrix takes the following form:
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By dividing the N matrix into three parts N; where i corresponds to row i in the N matrix, the

virtual strain terms can be expressed by means of the nodal displacements as:

de; = (N} |-x3N,+K,N;) v (2.109)
de, = (N, +K3N,-1;N3) &v (2.110)
dey = (N3 |~K,N +K,N,) & (2.111)
80 = (KN, | +K,K3N, =K N; | +K3N3 | =K KoN3) Sv (2.112)
8oy = (N, | =K K3N| =2, Np | ~Ny 1 ~K Ky N3 +[N) B (2.113)

(2.114)

8y = (k3N g +K; KN +Ny | =K Ny G N 20, ) B

By using the above terms, the stiffness matrix and the equilibrium forces of each element is

determined by using Egs.(2.99)-(2.100) and Egs.(2.86)-(2.92) respectively.

The load vector contribution from each element is further determined by prescribing the

increment in strain, twist and curvatures by means of Eq.(2.62) and Eqs.(2.64)-(2.66) and then
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use the internal virtual work equation defined by Eqs.(2.86)-(2.92) for each global curvature

increment. This corresponds to treating the loads as an initial strain problem.

The axisymmetric loading is further treated as a constant contribution to the prescribed

longitudinal initial strain.
2.7.2 _ Rod/surface interaction

The rod/surface interaction has been modelled by means of hyperelastic or elastoplastic springs
introduced at each node. The hyperelastic spring is conveniently used for bonded pipes where
the rod is surrounded by rubber, whereas the elastoplastic (Coulomb friction) spring is used
for nonbonded pipes in order to simulate sliding under friction. The elastoplastic spring has
components of both stiffness and force in the X! and X° directions depending on the direction
of slip [2.19]-[2.20]. It is coupled to a hyperelastic X2 spring that simulates the radial stiffness
of the supporting pipe. Hyperelastic properties in the X! and X? directions are included as an
option. The spring properties are shown schematically in Figure 2.13.

2.7.3 _ Numerical integration

The technique used in order to carry out the integrations of the virtual work terms has been
based on the three point Gauss numerical integration scheme. Thus, the torsion, curvature and
strain components have to be prescribed and updated in the three integration stations.

In principal the three point Gauss integration scheme integrates a fifth order polynomial
exactly. It is however seen from Eqs.(2.109-2.114) and Eqs.(2.99,2.100) that the resulting
strain energy occuring in the stiffness matrix term will be of sixth order due to the coupling
terms. The integration method used will therefore represent a reduced integration method

[2.21). The accuracy will be further commented in Chapter 4.
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Figure 2.13 Tendon/Pipe interaction model

2.74 _ Numerical procedure

The numerical procedure utilized in order to solve the previous examined equations is briefly

described below:

Loop over global curvature increments

For each global curvature step n, the load vector contribution is computed for each element

by means of Gauss integration. The procedure used at each station is started by first
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prescribing the increments of longitudinal strain AE?f » twist Ax,P, and curvatures Ax,P and
Ax3P, using Eq.(2.62) and Eqgs.(2.64)-(2.66). Then the corresponding prescribed accumulated
deformation values E?,p » 0P, 0P and @;P and also the total torsion and curvature

components K, K, and k; are updated. The load vector contributions are then calculated
by using Eqs.(2.86)-(2.92) and the incremental prescribed kinematic quantities. The
resulting accumulated internal element forces S are determined and stored for each

element. Governing incremental kinematic equations are:

ERP" = EDPY! « AED Py (2.115)
@)D" = @)1 + Ay (2.116)
(@5)" = (@) + Ay 2.117)
(@) = @™ + (A" (2.118)
()" = ()" + @A) (2.119)
()" = ()" !+ (A" (2.120)

.121)

()" = (k)" + (A

Equilibrium iterations within one load step

1. Build up the element stiffness matrices by using Eq.(2.99), Eq.(2.100) and Egs.(2.109)-
(2.114). In order to perform static condensation for elimination of the two internal nodes,

the element equilibrium equation can be formulated as:

t 1t
AS| fleee kai][aw, _|Ase (2.122)
As| ki kif|Av, As”
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where AS* and AS™. have contribution both from internal stresses and consistent contact
€ [

forces.

2. Perform static condensation of Eq.(2.122) to determine the element load vectors and

stiffness matrix contributions by means of matrix manipulation :

3 it -1 1 it
AS=AST'-AS -k k;; (AS '-AS') (2.123)

- -1
k=kee-ke ii k ie (2. 124)

The sub-matrices k,; and k,-;' are stored in order to find the elemental displacement

distribution after solution of the final equation system.

3. Add the element load vectors and stiffness matrices into the global load vector AQ and

tangential stiffness matrix Kn
4. Implement interaction springs and boundary conditions.

5. Solve the equation system. Governing equation is:

KpAq=AQ (2.125)

6. Update the internal kinematic quantities by first finding the internal nodal displacements
by:

-1 ext it, 4 -1
Av =k (AS T -AST) -k ki Av, (2.126)
and then update the kinematics in each Gauss station by:
(e))*/ = (e 1* il ¢+ (Ae )/ @2.127)
1992
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(6" = (eI i1 4 (g, (2.128)
(eg)" 7 = (g1 *m S 4 (Agy (2.129)
(Ep)™i = (EQy-1sm il o (Ae, +%Aef+%Ae§+_;Ae§)"' j (2.130)
(@)™ = (@t I*m Il . Ay (2.131)
(@)™ = (@t il (A (2.132)
(@)™ = (gt Im il o (A (2.133)
)" = (eritm ol o Ay (2.134)
(™1 F = (e om i y pcynd (2.135)
(K3)n+l.j = (K3)n—l+m, -, (AK3)"'j (2.136)

where j is the iteration step and m=0 for j = I and = / else.

7. Determine the unbalanced load vector from each element in the same way as described
for the load step, but based on the difference between the last calculated quantities of
Eqgs.(2.130-2.133) and the prescribed quantities of Eqs.(2.115-2.118) from the current load

step computation.

8. Update the interaction spring state and add the reaction forces to the load vector to be

used for next iteration.
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9. Calculate normalized Euclidean displacement norm and unbalanced force norm. If these

are larger than the tolerance limit repeat step 1-9, else initiate the next load increment.

2.7.5 __Computer implementation
The procedure outlined in the previous sub-section has been implemented into a computer

program AFLEX. The language used is standard FORTRAN-77 and it has been implemented
on DEC-station under the UNIX operative system.
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3 FATIGUE MECHANISMS IN FLEXIBLE PIPES

3.1 Introduction

The purpose of this chapter is firstly to examine the different physical phenomena connected
to surface contact and sliding between layers during bending of nonbonded flexible pipes. This
will give an understanding of fatigue mechanisms relevant for armouring layers and also how
the friction coefficient is influenced by various factors. The friction coefficient is an important

input parameter to the numerical studies carried out in the subsequent chapters.

Secondly, the state of the art of current fatigue design practice will be reviewed together with

a presentation of available data for some important parameters.

3.2 Surface interaction

3.2.1 General

If two metal surfaces are in contact with each other like two armouring layers of flexible
pipes, there will be atom to atom contact in some regions, whereas in other regions no such
contact will occur due to surface roughness. The atom to atom contact will create junctions
between the two materials at certain asperities. By increasing the normal load, the number of
1992
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asperities in direct contact will increase, thus giving increased resistance against sliding
between the two surfaces if a tangential load is applied. The friction resistance therefore
depend on the real area of contact, thus explaining why the friction resistance is independent

of the apparent area of contact, but depending on the normal load only.

As the two contacting surfaces are exposed to an equal magnitude but opposite directed
tangential force adhesive interatom forces will build up at the individual asperity contact
points. These forces will inhibit free sliding between the two surfaces. Shear stresses will
therefore build up until the asperities are plastically sheared and unidirectional sliding takes
place. During this process material fragments are produced, thus creating wear of the two

materials.
The above is called the adhesive wear theory, according to Rabinowicz [3.1].

If the surfaces are exposed to unidirectional sliding or oscillatory sliding of sufficient
amplitude, the asperities in direct contact are sheared off during each cycle. This process will

involve sliding wear and the amount of wear can be evaluated by the Archard’s formula [3.2).

which reads:
. kv Pyu G.1)

where V,, is the wear volume, k,, is the wear coefficient, Py is the normal load, u is the

sliding distance and p, is the material surface penetration hardness [3.1].

3.2.2 _ Fretting

Fretting is defined as low amplitude oscillatory sliding between two tribo surfaces (contact

between two convex surface elements), Vingsbo and Odfalk [3.3).

When two metal bodies are pressed together at a small contact area, high contact stresses will
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occur. These stresses have to be transferred into the surrounding material volume of both
bodies. The way this transfer takes place and the associated deformations were first
investigated by Hertz. A treatise of his theory is found in Love [2.2), where general solutions
are presented for bodies that can be described by means of their principal radii of curvature
at the point of contact and where the surrounding material volume is large compared to the

contact area. The solution involve elliptic integrals of first and second kind.

The solution of the contact problem for elliptical and spherical bodies exposed to both normal
and tangential loading has been extensively treated by Mindlin and Deresiewicz [3.4], Mindlin
[3.5], Deresiewicz [3.6] and Mindlin et. al [3.7]. For spherical bodies the solution shows that
the contact stress due to normal loading between the two bodies has its maximum at the centre
of the contact area. The theoretical distribution of shear stresses due to tangential load is
further found to be described by being zero at the centre of the contact area, growing towards
infinite at the rim of the contact area. This shear stress can, however, not exceed the normal
contact stress multiplied by the friction coefficient. Thus, microslip will take place outside the
inner region where the shear stress is less than the maximum friction stress. The inner region
at which no slip occur is termed the stick region, whereas the outer region where slip does

occur is termed the slip region.

Vingsbo and Sgderberg [3.8] defines four different slip amplitude regimes for oscillatory

sliding, each involving different modes of surface damage:

1. Stick regime. There is no slip between the surfaces. Very limited surface damage by
oxidation and wear. No crack formation observed (up to 109 cycles). Low damage

fretting, sometimes referred to as fretting corrosion.

2. Mixed stick-slip regime. Slip at the outer region, no slip in the inner region of contact.
Wear and oxidation effects are small. Accelerated crack growth may result in strongly

reduced fatigue life. Frerting Jatigue.
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3.Gross-slip regime. Slip occur over the entire contact area, but the displacement amplitude
is small. Severe surface damage by oxidation-assisted wear. Crack formation limited.

Fretting wear.

4. Reciprocating sliding regime (generally not classified as fretting). With increasing
amplitude gross slip approaches reciprocating sliding. The limiting conditions are those
for which wear mechanisms and wear rates become characteristic of unidirectional

sliding.

The mechanisms behind fretting and wear damage are complicated, and influenced by at least

three primary parameters for a given material and environmental condition [3.8] :

- Normal load
- Tangential force/displacement amplitude
- Tangential force/displacement frequency

Nakazawa et al. [3.9] however conclude that for frequencies in the range 0.167-20 Hz, the
number of cycles needed to create fatigue is unaffected by changing the frequency. The
material investigated was high strength steel. From this one can conclude that the normal load
and the displacement amplitude are the controlling parameters for fretting fatigue of armouring

layers in flexible pipes.

Among the above defined regimes, the mixed stick-slip regime has the strongest influence on
fatigue life. This is caused by the fact that high macrostresses will be present at the transition
between the stick and slip regions, stresses which are highly effective in crack formation {3.8].
The cracks initiated in this process will typically grow with an angle deviating from the

surface normal into the material.

Vingsbo and Odfalk [3.3] have advocated the use of fretting maps, in which the transition
from one failure mode to another is identified by combinations of critical values of two

primary parameters. Generally there is a gradual transition from the fretting corrosion to the
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fatigue region, whereas the transition from the fatigue to the wear region is more well defined.
There is no clear distinction between the fretting wear and the reciprocating wear regimes.
According to Waterhouse [3.10], the specific wear rate is controlled by unidirectional sliding
for slip amplitudes above 0.1 mm and the process should be termed reciprocating sliding for

slip above this value.

3.2.3 _ The friction coefficient

The friction coefficient depends on several factors, such as the material of the contacting

surfaces, static or dynamic sliding conditions and the presence of lubrication.

Lubrication or anti-friction layers are commonly used between armouring layers in order to

avoid surface interaction problems. Thus, the friction coefficients to be used in simulations

depend on the actual pipe design.

The effect of lubrication in terms of the friction coefficient depends on the sliding velocity
according to the Stribeck’s curve [3.11). Such a curve is presented in Figure 3.1 where the
friction coefficient has been expressed as a function of the lubrication parameter defined as
the product of dynamic viscosity, sliding velocity and the inverse normal load. The curve is
divided into three regions, each being characterized by different conditions of lubrication. At
zero and low velocities there is boundary lubrication, characterized by a thin lubricant film
adsorbing to the solid surfaces which significantly inhibits asperity welding. There is,
however, still considerable asperity interaction. As the velocity increases the friction
coefficient drops until hydrodynamic lubrication is obtained. At hydrodynamic lubrication a
pressure is created within the lubricant which is sufficiently high to keep the surfaces
completely separated. In this way, various conditions of lubrication gives significant different

friction coefficients.
In a flexible riser the sliding velocity will vary along each tendon (see Eq.(2.29) and

Eq.(2.30)). Thus, the friction coefficient will vary along lubricated tendons in flexible risers.
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Figure 3.1 Stribeck’s curve

3.3 Existing fatigue failure models

3.3.1 _Fatigue failure models

The fatigue failure models reported by Feret et al. [1.7] and Nielsen et al. [3.12) are both
based on wear effects due to reciprocating sliding and evaluating the wear rate by means of
the Archard’s formula, see Eq.(3.1). This means that fretting effects are not considered in

these formulations.

The oscillatory sliding amplitudes are obtained by assuming that the tendon deformations
follow the geodesic of a constantly curved pipe. Laboratory tests have further been carried out

to find the wear coefficients. On this basis and calculated contact stresses, a wear model is

established.
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In the first wear model one stage of deterioration is assumed. The reciprocating sliding causes
a decrease in the cross section of the armouring and therefore an increase in stresses. The
flexible pipe is considered to fail when the maximum dynamic stress range exceeds the fatigue
limit of the material. The fatigue limit has further been assessed on the basis of uniaxial
fatigue tests of an individual armouring tendon, from which a Haig diagram can be

constructed (Confer Figure 1.5).

In the second fatigue model reported, however, the S-N approach is utilized instead of the
conservative criterion of fatigue onset. The design life is subdivided into wear rate intervals
over which material loss is integrated. The stress ranges characterizing one interval is adjusted
for the amount of wear that occured in the previous interval. Miner’s rule is then used to
determine the expected life at selected locations based on cumulative damage. The detailed

procedures used are however not given on explicit form.

3.3.2  Measured friction and wear coefficients

The effect on friction from lubrication for two steel armouring layers in direct contact was
investigated both by using individual tendon specimens and full-scale pipe specimens as
reported by Feret et al. [1.7). With reference to the Stribeck’s curve in Figure 3.1, the static
friction coefficient corresponding to zero sliding velocity was found to be 0.3 whereas the
minimum value corresponding to full lubrication was 0.01. Under rotative bending tests of
flexible pipe specimens, a state of average lubrication was obtained giving dynamic friction
coefficients in the range 0.07-0.1. These friction coefficients were obtained by calibrating the

calculated friction moment to the measured moment, and they must therefore be considered

as average values along the tendons.

For metal to metal contact, Rabinowicz [3.2] gives wear coefficients of 5-10'3, 2:104, 10
and 10" for clean, poorly lubricated, average lubricated and excellent lubricated sliding

conditions, respectively.

The wear coefficients found from laboratory tests on individual armouring tendons, were in
the interval of 5-10® - 4105, whereas the results from rotative bending tests indicated a
1992
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reduction factor of 4. Following the definition by Rabinowicz, this confirms the state of

average lubrication, as the most relevant condition for flexible pipe armouring.
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4 NUMERICAL STUDIES

4.1 Introduction

The purpose of this chapter is mainly to verify that the numerical model presented in Chapter
2 adequately describes the tendon kinematics. This verification has been carried out by
comparing the results from the numerical model with analytical solutions valid for a tendon

along the geodesic in a Pipe exposed to constant curvature.

The second purpose is to evaluate the influence on the tendon behaviour in terms of twist,
Curvatures, stresses and displacements from various effects such as pressure, friction, global
tension, global curvature distribution, radial stiffness and load history. These effects have been
investigated by analysing one outer layer tendon exposed to different conditions of loading

and boundary conditions.

Finally an investigation of stresses and relative displacements in a realistic §-inch flexible riser

has been carried out.
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4.2 Stiffness of supporting surface

The tendon is assumed to be sliding on the supporting pipe cross section surface. This surface
is represented by means of hyperelastic springs in the numerical model. The outer armouring
layer will be restrained by stiff steel layers against inward displacements, whereas for the
outward direction the restraint is represented by the soft external sheath. Thus there will be
a significant difference between the inward stiffness and the outward stiffness. In order to find
the spring stiffness to be used in the numerical examples, the radial displacement of the
armouring layer versus the change in tendon axial stresses has been investigated under

axisymmetric conditions using the computer program CAFLEX [1.6].

For the purpose of the numerical examples described in this chapter a radial spring stiffness
of 9-108 Nm™2 inwards and 5-10® Nm™2 outwards has been used if not otherwise noted.

4.3 Comparison between numerical and analytical solutions

4.3.1 Description of example

The purpose of this example is to verify that the developed finite element model can give an
adequate description of the kinematics involved in the problem. The verification has been
carried out by comparing the results obtained from the numerical model with the analytical
solution for a case with a constantly curved pipe and with no friction between the armouring
layers. When the pipe is bent, the tendon will tend to move towards the geodesic in order to
eliminate transverse curvature. The analytical solution of this problem in terms of relative
displacement components as well as twist and normal curvature change is given by Egs.(2.29)-
(2.32).

One outer tendon with 25° lay angle and 0.1 m layer radius is exposed to a constant curvature
of 0.25 m'!. The material law of the tendon is based on standard steel values and the cross
section is 3 mm thick and 6 mm wide. The length of the model corresponds to 2.5 pitches and

50 elements are used. This gives an element length of 74 mm at 25° lay angle. The start of
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the model is at the outermost fibre on the tensile side of the Pipe (v = &t ) as shown in Figure
4.1. The tendon is assumed to be fixed against radial and transverse displacements but free
to rotate about the surface normal at both ends. Longitudinal springs with stiffness 2.0-107
Nm! have also been introduced at the ends. In order to ensure that the tendon will move
towards the geodesic, the friction is set to zero and an initial pretension stress of 500 MPa is
applied. The loading is applied by means of one tension load step, followed by five curvature

increments.

4.3.2 _Discussion of results
=== _LISCussion of results

The numerical and analytical solutions for relative displacements as well as twist and normal
curvature change, are presented in Figures 4.2-4.4. In these figures the numerical predicted
values are indicated by markers and continuous Curves are used to present the analytical
solutions. It is seen that the correlation between the numerical solutions and the analytical
expressions in general is very good. However, the numerical mode] gives more twist on the
compressive side than on the tensile side of the pipe, while the analytical solution is
symmetric. This is caused by the fact that the analytical solution represents the first term of
a Taylor series expansion in R/p. As the torsion involves third order derivatives of the arc
length coordinate, this simplification will introduce inaccuracies in the analytical solution. A

similar behaviour has been reported by Feret et al. [1.17].

The results show that the kinematic description implemented in the numerical model gives
similar results as can be obtained by differential geometry. It is thus concluded that the
kinematic restraint introduced by Eq.(2.34) correctly provides a support of the tendon element
and thereby gives a correct description of the tendon on the pipe surface,
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4.4 Displacements, twist and normal curvature at curvature gradients

4.4.1 Description of numerical example

The purpose of this example is to investigate the effect from variable curvature along the pipe

4.5

on relative displacements as well as twist and normal curvature change. The error induced by
applying the analytical expressions based on constant curvature at any point along a pipe with
varying curvature is demonstrated. The example is the same as described in Sub-section 4.3.1
except that the curvature is varied linearly from 0.25 m™! at the start of the model to zero after
0.5 pitch and that the boundary conditions in the longitudinal direction are changed. The

tendon is fixed in the longitudinal direction at the start of the model and free at the other.

4.4.2  Discussion of results

The results are presented in Figures 4.5-4.7. It is seen that both the longitudinal and the
transverse displacements are underestimated by the analytical expressions. The reason is that
any varying curvature will influence the tendon behaviour over the entire length of the model.
Since the curvature has the highest value at the start of the model and the tendon starts at the
tensile side, the length of the curve path along the first quarter pitch will be longer than for
the next quarter pitch. If friction was present this would induce axial strains in the tendon.

However, since there is no friction, straining is compensated by a longitudinal displacement

along the entire tendon.

By looking at the transverse displacements in Figure 4.5, the following is observed: As the
length of the model is increased towards infinite, the theoretical maximum value of the
transverse displacement needed to reach the geodesic will be limited by the value giving zero
slope of the transverse displacement curve. Therefore, the geodesic between two points on a
surface having variable curvature may involve larger transverse displacements than for a

constantly curved pipe even if the maximum curvature of the first pipe is smaller.

It is seen that the twist and normal curvature change are overestimated by the analytical

formulas. This is caused by the fact that the gradient of transverse tendon displacement is
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lower than predicted by the analytical formulas, i.e the distance over which the actual

displacements occur is longer.

Figure 4.5 Comparison between numerical
(dots) and "analytical” (solid line) predicted
longitudinal displacements, linear curvature
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Figure 4.7 Comparison between numerical
(dots) and "analytical” (solid line) predicted
normal curvature change, linear curvature
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Figure 4.6 Comparison between numerical
(dots) and "analytical" (solid line) predicted
twist, linear curvature.
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4.5 Effect from friction and pretension on transverse displacements

4.5.1 Description of numerical example

Sub-section 4.3.1, except that the lay angle, the cross section geometry, the friction coefficient

and the tendon tension are varied as described below.

4.5.2 __ Tension under no friction
—===__CAsIon under no friction

to zero. Results are normalized with respect to the maximum value found from Eq.(2.30),
which represents the geodesic solution, Two alternative lay angles (25° and 35% and two
Cross section dimensions (1XI mm and 3xg mm) are included in the analysis.
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Figure 4.8 Normalized transverse displacement as function of applied tensile stress, no friction

4.5.3 _ Friction under constant tension
==:2  TTIClion under constant tension

The normalized transverse displacement is studied as a function of the friction coefficient. The
cross section dimension is 3x6 mm and a pretension stress of 150 MPa is applied. Three
alternative lay angles (25°, 35° and 45°) are investigated. The friction is introduced by using
the Coulomb friction model and by applying the full magnitude of the friction force after 0.1
mm sliding which corresponds to the transition between gross-slip and reciprocating sliding

conditions (confer Sub-section 3.2.2).

By using the Principle of Virtual Displacements and assuming a simple trigonometric
sinusoidal shape function, including terms from axial forces, initial curvature along the
loxodromic curve, bending stiffness and sideways forces from friction, the maximum

normalized transverse displacement of the tendon is obtained as:
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_ " Colcosa (1+sin’a) C, 1, sin’a
u3 = (4-1)
Q, R?
I+ >
sin“c Co I,

slip direction. If the slip had followed the tendon axial direction, the friction force would not
have a component in the transverse direction. Since a bent pipe will induce tendon transverse
Curvature along the tendon, transverse force components will occur due to tension as well as
torque and bending moments. These load components will tend to eliminate the transverse

curvature. Thus both longitudinal and transverse slip will always occur. This is in

transverse displacement will, however, be significantly reduced Compared to the geodesic
solution. For a lay angle of 35° only 40 % of the possible slip will take Place for a friction

coefficient of 0.05,

coefficients of 0.12, 0.075 and 0.04 for 25°, 35° and 45° lay angles respectively by using
Eq.(4.1). This result can be verified by introducing Eq.(2.14) and Eq.(2.65) in Eq.(2.33).
Transverse displacements can thus not take place for friction coefficients larger than;

Ho= 2222 (usindey R 4.2)
sin“a, P
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This equation is studied in Figure 4.12, where the limit friction coefficient is presented as a

function of R/p for several alternative lay angles. In this case R/p = 0.025. It is seen that the

results obtained for the limit friction coefficient by Eq.(4.1) are in good agreement with the

values obtained by Eq.(4.2). However, analytical formulas are generally not capable of

predicting the actual transverse displacements.
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Figure 4.9 Normalized transverse Figure 4.10 Normalized transverse
displacement as a function of friction, 25° displacement as a function of friction, 35°
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4.6 Investigation of friction effects under cyclic curvature loading

4.6.1 __ Description of example

The purpose of this example is to study the influence from friction on axial stresses and
longitudinal displacements during loading and unloading throughout a cycle of constant
curvature loading. Two alternative friction formulations are used, namely hyperelastic and

Coulomb friction spring models.

The example is similar to that described in Sub-section 4.3.1, except that the pretension stress
is 150 MPa and the friction coefficient is set to 0.05. The full magnitude of friction is
introduced after 0. mm relative displacement as described in Sub-section 4.5.3. The
pretension is applied under no friction but friction is introduced during the succeeding

stepwise application of constant curvature cycles ranging from -0.01 m™! to 0.01 m"!.

4.6.2 Investigation of alternative friction models

Figure 4.13 shows the axial stress in node 21 (see Figure 4.1), which is positioned on the
tensile side of the pipe, as a function of curvature and using both hyperelastic and Coulomb
friction spring models. It is observed that for the hyperelastic model there is no hysteresis as
expected, whereas the Coulomb friction spring model gives significant hysteresis. The
predicted maximum stress range is, however, equal for both formulations. This is due to the
fact that the value and direction of the friction force computed by the hyperelastic model is
a one to one function of the total relative displacement. Thus, in order to change friction force
direction in the hyperelastic model, the sign of the displacement has to shift. The maximum
stress will therefore be equally predicted for periodic loading where the curvature shift sign.
However, for cases where the curvature direction does not change, there will be a significant
difference between the stress ranges predicted by the Coulomb friction and hyperelastic spring
models due to the hysteresis effect. The observation is also made that there is a smooth

transition in the axial stress towards the threshold value corresponding to full sliding.
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Figure 4.14 shows the axial displacement of node 26 (see Figure 4.1), which is positioned at
the neutral axis of bending, during the same curvature cycle. Both spring formulations are
included in the analysis. It is seen that the axial displacement at this point is not influenced
by friction, thus being independent of the spring model choice. This is due to the fact that the
possible axial straining induced by bending will create shear stresses much higher than the
friction resistance. Thus the displacements will be entirely controlled by the movement of the

supporting pipe.

Figure 4.15 shows the corresponding force displacement diagram for the Coulomb and

hyperelastic spring models in node 26.
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Figure 4.13 Axial stress history in node 21 Figure 4.14 Axial displacement history in
node 26

4.6.3 _ Development of slip zone

The curvature amplitude is increased to 0.02 m™!. Other parameters are as described in Sub-
section 4.6.1. Figure 4.16 shows the normalized slip length as a function of curvature during
the first quarter of a cycle. The normalized slip length is obtained by taking the length of
tendon along one half pitch having relative displacements above the value corresponding to
full friction (0.1 mm) and then divide by the half pitch tendon length. It is seen that as the
1992
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curvature increase above 0.0047 m"! slip occurs and grows rapidly up to a curvature level of
0.0078 m™! and then shows a continuously reduced gradient. This behaviour explains the

smooth transition of the axial stress curve towards the threshold value in Figure 4.13.
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Figure 4.15  Spring force/displacement Figure 4.16 Development of slip zone as a
diagram in node 26 function of curvature

4.7 Investigation of stress effects from bending gradient and end restraint

4.7.1 __ Description of example

The purpose of this example is to perform a sensitivity study of the stresses occuring at end
restraints with respect to the sequence of load application, end restraint axial stiffness, the
radial stiffness and the friction coefficient. The end restraint axial stiffness occurs from the
termination of each individual tendon at the end fitting by use of an epoxy casting whereas
the radial stiffness is due to the stiffness of the surrounding pipe layers as described in Section
4.2. The example chosen corresponds to a flexible pipe that is rigidly connected with a given
end angle at one end and exposed to a stepwise increasing tensile load in the other end. The
tensile load will hence induce a moment at the rigidly connected end. This will induce an

exponential curvature distribution along the pipe given by:
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where EI is the bending stiffness, T is the applied tension, @ is the applied end angle and ;
is the length coordinate along the pipe longitudinal axis. For a fixed angle and given bending

stiffness there will be an unique curvature distribution corresponding to each tension level.

Based on the above considerations, the maximum Curvature at the fixed end of the tendon
model is prescribed to 0.1 m™! and then decreasing linearly to zero after one half pitch. This
curvature is assumed to be obtained at an axial stress level of 450 MPa. The initial axial stress
from internal pressure at zero curvature is assumed to be 150 MPa which means that the

maximum curvature corresponds to 300 MPa increase in the tendon axial stress.

The model geometry and boundary conditions are according to Sub-section 4.3.1 except that
the tendon starts at the neutral axis of bending (v=1/2) and that the tendon at this position is
rotationally fixed about the surface normal. According to Eq.(2.65) the maximum tendon
transverse curvature will occur at the neutral axis of bending. Since the tendon is assumed to
be fixed against rotation about the surface normal at this point, secondary curvature effects
similar to those described by Eq.(4.3) will occur locally in the tendons as the tension is

increased.

According to Sub-section 4.4.2, a variable curvature distribution as described by Eq.(4.3) will
create friction induced axial stresses caused by axial displacements. These displacements occur
from the differences in path lengths of the tendon along the tensile and compressive pipe
sections respectively. The difference in path length in this case occurs both due to the position
of the tendon at the start of the model and the presence of curvature gradient. The lay angle
is 25° implying that the tendon will be on the tensile side of the pipe when the maximum

global curvature occurs. Thus axial tensile stresses will occur in this case.
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The full magnitude of friction is obtained after 0.1 mm displacement corresponding to the
transition between the gross-slip and reciprocating sliding regimes (confer Sub-section 3.2.2).

Both axial and local bending stress effects are studied.

4.7.2 _ Axial stress distribution for alternative load histories
—Ltee_ AAI4 SUeSs qistribution for alternative load histories

The effect of applying two alternative load histories is studied. The end restraint and radial
spring stiffness are according to Sub-section 4.3.1 and the friction coefficient is 0.05.

Both load histories are started by applying the initial prestress of 150 MPa. Thereafter, the
first history applies curvature and tensile stresses by equal incrementation (History 1). The
second history applies 70 % of the total curvature at 20 % of the tensile stress during the first
part of the load sequence, then continuing up to the full magnitude of both (History 2). These

procedures have been used throughout loading, unloading and reloading.

Figure 4.17 shows the axial stress histories for node 6 being positioned at the outer tensile
side of the pipe. Results for both loading procedures are given. It is seen that there is a
significant difference in stress values at a given curvature. The maximum stress range is,

however, not significantly effected by the sequence of load application.

4.7.3 _ Axial stress distribution for alternative radial stiffnesses
L= __OAla) SUeSS distnbution for alternative radial stiffnesses

The axial end restraint spring stiffness is 2-10’ Nm™! as in Sub-section 4.3.1 and the friction
coefficient is 0.05. The load history has been based on equal incrementation of tension and
Curvature up to the maximum values. The maximum axial stress distribution obtained by radial
stiffnesses 9-10° (Stiffness 1), 9-108 (Stiffness 2) and 9-107 Nm™2 (Stiffness 3) have been
studied. The results are presented in Figure 4.18. It is seen that for stiffnesses above 9-108,

a further increase in stiffness will have limited effect on the stresses.
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4.7.4  Axial stress distribution for alternative end restraint spring _stiffnesses

The radial spring stiffness used is 9-10%8 Nm™2 according to Section 4.2 and the friction
coefficient is set to 0.05. The load history has been based on equal incrementation of tension
and curvature up to the maximum values. The maximum axial stress distribution obtained by
end restraint stiffnesses 2-108 (Stiffness 1), 2-107 (Stiffness 2), 2105 (Stiffness 3) and 2-10°
Nm'! (Stiffness 4) are presented in Figure 4.19. It is seen that for stiffnesses above 2-107,

an increase in stiffness will have limited effect on the stresses.

4.7.5 _ Local bending stress distribution for alternative friction coefficients

The distribution of the maximum bending stresses close to the end fitting and induced by
bending about the surface normal is studied for alternative friction coefficients. The results are
shown in Figure 4.20. The radial and end restraint spring stiffnesses used are 9-108 Nm™2 and
2.0:107 Nm'! respectively and the load history is as described above. It is seen that for zero
friction the bending stress build up to very large values at the end restraint. This is due to
secondary bending induced by the tension. As the friction increase, the tendon is kept fixed
along the prescribed curve path, thus reducing secondary bending effects. The threshold value
for the bending stress is found to be 64 MPa as the friction is increased. This corresponds to

the value calculated from Eg.(2.65).

wot 003 002 003 004 005 008
CURVATURE (1/M)

Figure 4.17 Axial stress in node 6 for Figure 4.18 Axial stress distributions for
alternative load histories alternative radial stiffnesses
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Figure 4.19 Axial stress distributions for Figure 4.20 Bending stress for alternative
alternative end restraint spring stiffnesses coefficients of friction

4.8 Investigation of a 8-inch pipe bending stiffener

4.8.1 Description of example

The purpose of this example is to investigate the stresses and relative displacements in a
realistic flexible riser termination, The example chosen is taken from Sgdahi [1.4]. An 8-inch
flexible riser is installed in a Steep wave configuration at 120 m water depth and connected
to a floater as shown in Figure 4.21, Bending stiffeners are used for connection to the floater
and to the sea floor, The wave condition considered is described by a Pierson-Moscowitz wave
spectrum with a significant wave height H, = 14.5 m and a peak period T, =165s. In
addition, a constant current velocity of 1.0 m/s has been included in the analysis. Both waves

and current are acting in the positive x-direction, see Figure 4.21,

By means of the procedure described in [1.4] the stiffness distribution of the bending stiffener
has been found. The result is shown in Figure 4.22. According to common design practice,
the bending stiffener starts at a distance of 200 mm from the end fitting to avoid stress
concentration problems at the point where the tendon enters the end fitting (Confer Section

4.7).
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The basic parameters describing the flexible pipe cross section are summarized in Table 4.1.
The cross section include two layers of crosswound tensile armouring. The geometrical
quantities have been estimated based on the outer diameter and weight specified in [1.4],
whereas the strength characteristics have been assumed. It is also assumed that there is an
antifriction layer supporting the inner armouring layer, whereas lubrication is present between
the two armouring layers. The friction coefficient has been taken as 0.1 between the inner
layer and the antifriction layer and 0.05 between the armouring layers. This corresponds to
an average in the range 0.07-0.1 according to Sub-section 3.3.2. The internal pressure is

assumed to be 200 bar.
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Figure 4.21 8-inch flexible riser installed in a steep wave configuration
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Figure 4.22 Bending stiffener design of 8-inch flexible riser
Table 4.1 Characteristics of 8-inch flexible riser pipe
' Parameter ) - Value ”
External diameter (m) 0.294 "
Mass per unit length (kgm'!) 120.0 B
Submerged weight per unit length (kNm™}) 0.494
Axial stiffness (kN) 2.9-10%
Sliding bending stiffness (kNm?) 10.0
Tendon cross section a/b (mm) 9.0/4.0
Number of tendons Outer/Inner 72/69
Armouring radius Outer/Inner (mm) 136.0/132.0
Critical curvature radius (m) 4.0
Ultimate stress (MPa) 1500.0
Fatigue limit at zero mean stress (MPa) 500.0
Lay angle Outer/Inner (deg.) +35.0/-35.0
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One cycle of simultaneous tension and curvature histories has been investigated. This cycle
is an idealized extreme cycle taken from a 9 hour record of a dynamic simulation in a typical
design storm condition. The cyclic description of tension and end angles used in the analyses
are shown in Figure 4.23. For each realization of end angle and tension there is a unique
curvature distribution [1.4]. By selecting the realizations at 5° end angle intervals throughout
the cycle, the curvature distributions of Figure 4.24 are obtained. These are taken directly from

the simulations carried out by Sgdahl [1.4).
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Figure 4.23 One cycle of riser tension and Figure 4.24 Curvature distributions taken at
end angle 5° intervals

4.8.2 Method of analysis

In order to predict the distribution of maximum stress ranges in the armouring layers and the

distribution of maximum relative displacements between the two armouring layers, the

following procedure has been utilized.

CAFLEX [1.6] was first used in order to find the tendoa axial stresses due to internal pressure

and applied tension, and in order to determine the stiffness properties in the radial direction.

Thereafter the present finite element model was used in order to investigate the tendon

behaviour due to bending. AFLEX calculates stresses and displacements in one armouring
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tendon exposed to an arbitrary load history defined by axial stresses and corresponding
Curvature distributions. The calculations carried out in Section 4.6 showed that for periodic
loading including shift of curvature direction the stress range was equally predicted by using
Coulomb friction and the hyperelastic spring model. In order to investigate this effect in a
realistic flexible riser, both spring models were used. The load procedure was determined to
implement the true combination of tension and curvature distribution in the actual order of
occurance. The load sequence applied in the AFLEX model therefore consisted of a series of

tensions and curvature distributions throughout one cycle defined by Figures 4.23 and 4.24.

The AFLEX program can handle only one tendon in an analysis. In order to find the stress
and displacement values along the pipe surface, 8 different tendons were investigated, each
starting at 45 degrees intervals at the restrained end. The results generated from these
calculations were then transformed into a fixed grid which had 8 points over the cross section
and 150 points along the pipe. A new refined grid was further generated using 40 points over
the cross section. The stress value at each point was calculated by curvilinear interpolation
between the 8 point grid. This grid was then used to generate 3-dimensional plots of stress and
relative displacement ranges by using the UNIGRAPH 2000 + program [4.1). The computing
time for the complete analysis was approximately 6 hours running 8 work stations (DEC-
station 5000/120) in parallel.

4.8.3 Description of numerical model

A pipe section starting at the end fitting and reaching 3.8 m outside the bending stiffener is
investigated. This gives a total length of the finite element model of § m measured along the
pipe axis (Confer Figure 4.22). 200 elements were used which gives an element length of 49

mm.

The stiffness along the surface normal was obtained by CAFLEX to be 2.2:108 Nm-2
inwards and 5.0-105 Nm™2 outwards for both layers.
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Tendon displacements along the surface normal and in the transverse direction and the rotation
about the surface normal were all assumed to be zero at the end termination. In the
longitudinal direction, a longitudinal spring with stiffness 210" Nm™! was introduced. At the

other end the tendon was fixed only in the surface normal and transverse directions.

4.8.4  Definition of stress and displacement ranges

The stress range between two equilibrium states has been based on using the Von Mises’
equivalent stress concept at the comers of the tendon cross section (Confer Figure 4.25). The

equivalent stress range Ao, is defined as:

2 2 2 2
Ac,=(0},+20,;40,) +AG) | +05, +20,)A0,, +A07), =0} 01, -AC| |03, -0} 1A0;,-AC | |AC,,
I

*‘30’122 +60'|2A0| ) +3A0%2 +30f3 +6013A013 +3A0'f3 )7
1

2 2
"("31 +0,,-0102,+30), *3"?3)7 (4.4)
where

O’I 1 '-"'O'a +Gb2 +0b3 (4.5)

and where 0, is the total longitudinal stress, with components G, (axial stress), 0, (bending
stress caused by bending about the X? axis) and Oy3 (bending stress caused by bending about
the X? axis). ©,, is the contact pressure, whereas O, and G5 are the shear stresses caused
by twist. A indicates that the stresses are the maximum ranges found between two equilibrium

states being obtained by checking alternative load steps during loading and unloading.

The corresponding relative displacement ranges were further found by considering Figure 4.26

where the first subindex on u defines the direction of displacement along the axes X! and X°

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Numerical Studies 4.23

and the second subindex defines the considered layer. The relative displacement Au,,, is

defined by the following equation:

Aurel=(Au lzl +Au |22 -2Au 1 ,Au 1 20052(1 +Au32] +Au322 -2Au3 lAu:; 20082(!
1 (4.6)

~2Au ] 2Al‘3 1 Sin2a+2Au| lAu328in2a)—2.
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Figure 4.25 Definition of stress components Figure 4.26 Definition of displacement
components

4.8.5  Results from initial analyses

Table 4.2 gives the tendon axial stresses for the armouring layers and the contact pressure
occuring between the armouring layers as obtained by CAFLEX for different alternative

tension levels and for 200 bar internal pressure.
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Table 4.2 Axial stresses due to axisymmetric loading of 8-inch flexible riser pipe

| Quantity T=0.0kN | T=70kN | T=108 kN

Axial stress o, 206 222 23]
Outer layer (MPa)

Axial stress o, 243 260 269
Inner layer (MPa)

Contact pressure G,, 2.1 23 24
(MPa)

4.8.6__ Presentation and discussion of maximum stress ranges

The distribution of the maximum stress ranges along the first 6 m of the inner and outer
armouring layers are shown by contour plots in Figures 4.27 and 4.28 for the outer and inner
layers respectively. In these figures the pipe has been rotated 90 degrees away from the reader,

so that the tensile side of the pipe is positioned at Z° = 0, closest to the reader.

It was found that the maximum stress ranges were equally predicted for the two spring models
and the maximum stress ranges were found to be determined by the combination of maximum

end angle/ tension and the minimum end angle/tension equilibrium states.

It is seen that the largest stress ranges will occur in the inner layer. The largest stress range
is found for the tendon at the neutral axis at the point where the curvature starts. This tendon
is directed towards the tensile side of the pipe at this point. The maximum stress range was
found to be 592 MPa, of which 63% was axial stresses induced by friction and 3% % was due
to bending about the surface normal. The large amount of friction induced axial stresses is
caused by the axial displacement needed to compensate the increased length of the first quarter
pitch from curvature. Since the tendon starts at the neutral axis, there is no neighbouring

compressive pipe section. The increased path length along the tensile side must therefore be
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compensated by feeding tendon from sections further away, thus giving increased friction
induced stresses (see Figure 4.28). Since the inner layer has higher contact loads, this layer

will have the highest stresses.

By linear interpolation in the Haig diagram, the maximum allowable value based on non
exceedance of the fatigue limit was found to be 400 MPa, which is far below the predicted

stress range. )
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Figure 4.27 Distribution of maximum stress ranges in the outer armouring layer of the 8-inch
riser
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Figure 4.28 Distribution of maximum stress ranges in the inner armouring layer of the 8-inch
riser.

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Numerical Studies 4.26

4.8.7 _ Presentation and evaluation of maximum displacement ranges

The distribution of the maximum relative displacement ranges occuring between the two
armouring layers along the first 6 m of the model are shown by contour plot in Figure 4.29.
In this figure the pipe has been rotated 90 degrees towards the reader, so that the compressive

side of the pipe is positioned at Z° = 0, closest to the reader.

Fecerereceses
e

Figure 4.29 Distribution of relative displacement ranges for the 8-inch flexible riser

It is seen that the maximum relative displacement ranges occur along the neutral axis of the
pipe as expected. The maximum relative displacement found was 12.3 mm. [nvestigation of
the numerical values showed that for the inner layer, the slip is dominated by longitudinal
displacements. This is due to high contact loads inducing large friction forces that will tend
to suppress transverse displacements. For the outer layer, however, and at the point of
maximum slip, 40% of the slip was caused by transverse displacements which is due to less

contact loads and hence also friction forces for this layer.
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5 DISCUSSION OF EXISTING MATHEMATICAL MODELS

5.1 Introduction

In this Chapter, the existing models for predicting the behaviour of flexible pipe cross sections
will be discussed with major focus on the innovative theory developed by Feret et. al. [1.17].
This theory represents the basis for the CAFLEX computer program, for which detailed
documentation has been available [1.6). The CAFLEX program was developed during 1989
for STATOIL as a cooperation between SINTEF (Trondheim) and IFP (Paris). Another basis
for this discussion is experimental results that have been published from the FPS-2000 project,
see Skallerud [5.1], [5.2]. For general information of the FPS-2000 project, confer Olufsen

[5.3].

The CAFLEX theory will be discussed and compared with other formulations as presented in
papers [1.18])-[1.32] and the theory presented in Chapter 2. This will also include comparisons
between the results obtained by the CAFLEX model and results presented in Chapter 4. By
considering the deviations between test results and the CAFLEX computations reported in
[5.1]-[5.2], the present theory has been used to suggest improvements in the CAFLEX model.
These improvements were implemented into the CAFLEX program, February 1992 [5.4] with

promising results.

Ph.D. Thesis Svein Sasvik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Discussion of Existing Mathematical Models 5.2

5.2 Presentation and discussion of existing models

3.2.1 Axisymmetric behaviour

The axisymmetric model is used to predict the stresses in each layer of bonded and nonbonded
flexible pipes occuring from tension, torque and internal/external pressure, and to estimate

cross section parameters for global analyses, such as axial stiffness and torsion stiffness.

Since pressure, tension and torque loads do not change the shape of the pipe cross section, the
assumption of axisymmetric behaviour can be used and relatively simple relations can be
obtained to predict strains and stresses in each layer. The governing equations are based on
equilibrium, a material law and kinematic relations. The theory is outlined in detail in [1.6]
and will not be fully repeated here. The basic principle is based on equilibrium consideration
of one pipe element exposed to internal and external pressure, a tensile/compressive force and
a torque as shown in Figure 5.1. Each physical layer of the pipe is represented by one internal
element, for which local equilibrium equations are established. There are two different element
types, the sheath element and the helix element. The sheath element is used to simulate

pressure carrying tubular layers whereas the helix element is used for the carcass, zeta-spiral

and the armouring layers.

Figure 5.1  Pipe element
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For the sheath element, equilibrium equations are established by regarding longitudinal, radial
and circumferential forces and the torque. Hooke’s law is further assumed, i.e the material is
assumed to be linearly elastic in the relevant range of material straining and to have equal

properties in all directions.

McNamara and Harte [1.18] allow orthotropic material behaviour of the tubular layers, i.e. the
layer is allowed to have different properties in the circumferential and longitudinal directions.
Due to the low stiffness of the tubular layers compared to the steel layers, however, the large
part of the axisymmetric loads will be carried by the steel layers where the most critical
stresses therefore will occur. An improved accuracy on the material law applied for the tubular

layer, will consequently be of limited value.

Thin shell theory is used to describe kinematic relations, and together with the equilibrium

equations and material law one can derive the final relations between load condition and

displacements and stresses.

Equilibrium of the helix element is based on the theory of thin curved rods as described in
Section 2.3. When the pipe is exposed to axisymmetric loads, the tendon will still describe a
helix and the transverse curvature X, and all differentials will therefore vanish. Further, among
all the applied forces and moments only the distributed contact line load ¢, will be different

from zero, which imply that the problem reduces to the two following equilibrium equations:

k30, -K;Q3+9,=0 G.0)

Eq.(5.1) represents the force equilibrium equation in the radial disection whereas Eq.(5.2)
represents the moment equilibrium equation about the surface normal. These two equilibrium
equations can be used to eliminate the unknown contact pressure g, and shear force Q; once
the other quantities are expressed as a function of twist and curvature induced by the
axisymmetric loading. In CAFLEX only the axial force Q, was originally taken into account,
as the changes in torsion and normal curvature induced by axisymmetric loads were assumed
1992
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to be small. In the model presented by Witz and Tan [1.20] and the work made by Costello
et. al. [1.23]-[1.27], these terms were included. In Sub-section 5.3.1 , equations describing these
effects have been developed on the basis of the theory outlined in Chapter 2. The section also

includes an evaluation of their importance.

For the helix element, Hooke’s material law is again assumed. This law is however modified
in the case of bonded pipe reinforcement in order to take into account the fact that this
armouring is made of thin helically wound strands giving different moduli in the longitudinal

and transverse directions.

The kinematic quantities are expressed by considering the motions of an element in
longitudinal, radial and circumferential directions assuming the cross section shape to remain

circular under all types of loads.

A distinction is made between bonded and nonbonded pipes with regard to the circumferential
strains in the helical windings due to pressure. This is necessary as the armouring layers of
a bonded pipe is surrounded by rubber, having a Poisson’s ratio close to 0.5. This implies that
under pressure, the rubber will behave like a fluid having equal stresses in all directions. A
steel layer between pressure barriers in a nonbonded pipe will not have circumferential stresses
whereas the corresponding layer in a bonded pipe will have equal radial and circumferential

stress components. This is visualized in Figure 5.2,

L
P te

(a) Non-bonded tendon layer

"Ll
| e I |
N

(b) Bonded Amounng layer
Figure 5.2 Circumferential stresses
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The rubber between armouring layers in bonded pipes will tend to be squeezed outwards due
to internal pressure. This gives shear loading of the rubber inducing an associated
circumferential strain component in the steel tendon. According to Often and Lgtveit [1.19]
this will give a redistribution of stresses in each armouring layer, tending to reduce the

stresses in inner armouring layers and increase the stresses in the outer layers.

The physical interpretation is that due to the increased tensile transverse strain there will be
an associated compressive strain in the longitudinal tendon direction due to the Poisson effect.
In order to compensate the resulting reduction in tensile stress in the inner layers, the outer
layers tensile stress must increase. Thus a more even distribution of radial load transfer will

result. Often and Lgtveit thus conclude that a nonbonded model does not provide sufficient

accuracy for a bonded pipe.

The established equation system is based on local and global equilibrium and the restraints
induced by the gaps that may occur between layers. This leads to an equation system with

6n+2 unknowns, where n is the number of layers. The equations are obtained as follows:

For each layer there are three equations on layer level that takes care of equilibrium
between internal and external forces in longitudinal, circumferential and radial directions.
Similarly there is a local moment equilibrium equation linking the external torque to the

contribution from each layer. This gives 4n equations.

In addition there are four equilibrium equations on global level, linking the total
contribution from all layers to total axial force, torque and internal pressure and external

pressure. This gives 4 additional equations.

By consideration of the gap between layers, n-1 relations are established, expressing the

size of the gap explicitly.

Depending on positive or negative gaps there are n-1 additional relations. If the gap is
negative, the gap is set to zero. If it is positive, the pressure between the layers equals the

local pressure, which is zero between pressure barriers.
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This gives in total 6n+2 unknowns. It is noted that the last n-/ relations must be established

by means of iteration.

5.2.2 _ Bending behaviour of nonbonded pipes

The CAFLEX bending model for nonbonded pipes is based on assuming constant pipe

curvature and serves the following purposes:

To determine the friction moment.

To determine the sliding bending stiffness.

To calculate the minimum radius of curvature.
To predict stresses induced by bending.

To estimate fatigue and wear.

Prediction of friction moment and bending stiffness

The basic assumption made in the CAFLEX model for nonbonded pipes regarding the
prediction of friction moment and sliding bending stiffness, was originally that the tendon
would move to the geodesic when the tendons are prestressed due to internal pressure. In
Chapter 2 it was shown that a basic property of the geodesic is that it represents the minimum
distance between two points on a surface and that the curve normal vector is parallel to the
surface normal vector, thus having no transverse curvature. In order to go towards the
geodesic during bending, both longitudinal and transverse slips relative to the supporting pipe
structure are needed. The physical interpretation of this result is that the longitudinal slip
eliminate longitudinal straining, and that the transverse slip eliminate transverse curvature. The
geodesic thus represents an upper limit for the tendon/pipe relative displacement. It was,
however, shown in Chapter 4 that the transverse slip will be limited by friction forces. In the
case study of the 8-inch flexible riser presented in Section 4.8, transverse displacements were

eliminated for the inner layer and reduced for the outer layer.
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The above has been verified by observations made during testing of flexible pipes reported
in [5.1]. One observation during these tests is that the sliding bending stiffness increased as
the internal pressure was raised, whereas CAFLEX predicted a constant value. This can be
explained by the fact that since the tendon tend to be directed along the loxodromic curve
rather than the geodesic, transverse curvature of the tendon will occur. If the tendon is
prestressed due to internal pressure, tension or torque, a geometric or initial stress stiffness
will occur in each tendon that will increase the resistance against transverse deformation. This
will be seen as an increased bending stiffness of the overall pipe cross section. It is noted that
this initial stress stiffness effect has no connection to the global initial stress stiffness due to

global effective tension.

Another observation from the tests is that the friction moment was a factor 2.8 (in average)
less than the value predicted by CAFLEX when using a friction coefficient according to [1.7]
of 0.07. The CAFLEX model for predicting the friction moment was originally based on a
simple energy approach considering the friction forces and the sliding of the tendon along the
geodesic. Since the geodesic represents an upper limit for tendon displacements, the CAFLEX
theory will give an upper bound estimate of the friction moment. Both the sliding bending
stiffness and the friction moment are important input parameters to the global analyses.
Improved methods of predicting these parameters have therefore been suggested in Sub-

sections 5.3.2 and 5.3.3, respectively.

Prediction of stresses due to bending

The following stress components are considered by CAFLEX:

Axial stress due to tension variation.

Axial stress due to friction.
Bending stress due to normal curvature increment.

The axial stress due to tension is found from axisymmetric analysis. The friction induced
stress is found by considering the friction forces occuring along one quarter pitch, assuming
a harmonic longitudinal slip as for the geodesic solution (Confer Eq.(2.29)). The bending
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stress is based on the geodesic solution according to Eq.(2.32). In the CAFLEX manual [1.6]
it is clearly stated that the bending stresses are valid only for pipe sections being sufficiendy
far away from end restraints. To demonstrate the relevance of this limitation, a comparison
has been made between the results obtained by the CAFLEX model and the results from the
case study of the 8-inch flexible riser presented in Section 4.8. The results from this

comparison is presented in Table 5.1.

Table 5.1 Comparison of stresses between CAFLEX and AFLEX

Stress components (MPa) CA;_LEX AFLEX
Ao, +Ao,, | 120 405

B Ay, .’ 0 B 187j
B Aoy, 169 «0
Ao,:r 289 | 592

where Ao, and Ao, are the axial stress ranges caused by tension and global curvature
respectively. AGy, and Aoy are the bending stress ranges caused by transverse and normal
curvature whereas AG,, is the total stress range. It is seen that the total dynamic stress range
obtained by CAFLEX is 52% less than the value predicted by AFLEX. This is mainly caused
by the end restraint effect giving an increased axial stress due to friction. It is also seen that
the position of maximum stress is different. The CAFLEX formulation assumes that the
maximum bending stress occurs due to normal curvature and friction at the tensile/compressive
sides of the pipe, whereas the maximum found by the AFLEX analyses occurs from transverse
curvature and friction close to the neutral axis of bending at the end restraint. The above

demonstrates that the CAFLEX program as anticipated cannot be used to calculate stresses

close to the end fitting.
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Lifetime estimation

According to the theory implemented in CAFLEX the lifetime of a nonbonded flexible pipe

may be determined from the minimum of the following values:

The time corresponding to aging of the thermoplastic materials.
The time needed to reduce the tendon thickness by adhesive wear to such an extent that
either the mean stress exceeds a predefined portion of the ultimate stress or the dynamic

stress range exceeds the Goodman line in the Haig diagram.

The effect of fretting on the fatigue limit is not considered. The Archard formula is used to
predict the thickness reduction per year (see Eq.(3.1). The relative displacements during
bending are further estimated by assuming that the tendon moves towards the geodesic as
described by Eq.(2.29) and Eq.(2.30). By inserting Eq.(2.29) and Eq.(2.30) into Eq.(4.6) the

relative displacement range between two crosswound armouring layers is found to be:

2
Au,, =4 R _L_ (5.3)
p tanc

which is in accordance with the formula given in the CAFLEX manual. By using the above
equation for the example presented in Section 4.8, a relative displacement of 22.6 mm is
obtained. This is 83% larger than the value predicted by AFLEX. This indicates that
conservative estimates is obtained by the analytical formula. This is caused by the fact that
friction forces will reduce the transverse displacements in the real case. By assuming
longitudinal slip only, confer Tan et. al. [1.31] and Eq.(2.29), the corresponding value will be

7 mm, which is 43% lower than the AFLEX value. A nonconservative estimate is therefore

obtained by their approach.
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3.3 Improvements of the CAFLEX model

As mentioned in Sub-section 5.2.1, some simplifications were made in the CAFLEX program
such as neglecting local forces and moments due to the small change in lay angle, layer radius
and centre line elongation induced by axisymmetric loads. In addition, for the bending tests

reported in [5.1], the following discrepancies were found between observed and predicted

values:

The friction moment calculated by CAFLEX is larger than the measured values.

The measured sliding bending stiffness seems to increase with increasing internal pressure.
In the following, equations are proposed to describe the above effects.

5.3.1 _ The effect of local forces and moments

Reference is given to Eq.(5.1) and Eq.(5.2). In Eq.(5.1), the tendon axial force @, can be
found by studying the axial strain €, of the tendon centre line as a function of pipe axial

displacements, local radial displacements and global twist given as:

20 - 2 gin2 (54)

€, = €, Ccos“00 - — sin“o. + RO _ sino cosql
i Z R [$4

where all parameters are defined in Figure 5.3.

The moments M; and M, are found by using the theory developed in Chapter 2. From this
theory, the twist and normal curvature increment obtained when moving from the reference

stress free state to the deformed equilibrium state can be expressed as:
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dz = dZ'

Figure 5.3 Geometrical relations

AKI = K]ul'l + (K3—K',)u3.] + K1K3u2 (5.5)

(5.6)

AK3 ‘2'(]“3'1 - (K‘)zuz + K3um
where K, is the surface curvature in the transverse direction. It is noted that these expressions
give different results than found by Witz and Tan [1.20]. The reason is that Witz and Tan
express the new accumulated torsion and curvature by using the updated lay angle and layer
radius and then insert these quantities directly into Eqs.(2.13)-(2.14), obtained for a helix. This

excludes consideration of centre line straining that will induce both twist and normal curvature

change.

By studying the displacement and strain components along the local coordinate axes shown

in Figure 5.4, the displacement differentials are obtained as:

u,, =€, cos’o + RO, sino cosa (5.7
u3; = €, cosa sino - RO, cos’a (5.8)
1992
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Section B-B Section A-A

Figure 5.4 Components of deformation in local system

By inserting Egs.(5.7)-(5.8), Egs.(2.13)-(2.14) and Eq.(2.35) into Eqgs.(5.5)-(5.6), the following
results are obtained:

. 3 u
Ax, = ___smacosa(ezsinza +Re, °‘fs o, sinfo_2) (5.9)
R sino R
) 2 "
Ax; = s 0‘(-%:Zcosza + RO (2 COS ® .+ sinowcosor) - cos20_2) (5.10)
R tano R

By use of Eq.(5.4), Eq.(5.9) and Eq.(5.10), the moments M; and M; and the axial force Q,
are found by:

0, = CA g (5.11)
M, =Cl, Ak, (5.12)
My = C,l, Ax, (5.13)

By using Eq.(5.1) and Eq.(5.2) and decomposition of the axial force Q, and the shear force

Q; in the respective pipe directions, the following total global force and torque from the n
tendons in a layer are obtained.
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T = n (Q, cosa + (i5M; - x;M3) sinat) (5.14)
M, = n (Q, Rsina + M\coso. + Mysina - (;M| - x,M;) Rcosor) (5.15)

The above expressions are linearized as the current torsion and normal curvature are assumed
to remain equal to the initial ones. This is considered to be reasonable since the strains
induced by axisymmetric loading generally are small. The importance of the above corrections
are illustrated by an example presented in Figure 5.5. The figure shows the local bending
stress due to change in normal curvature as a function of the global longitudinal strain €,, for
alternative tendon thicknesses. The layer radius is 73 mm and the lay angle is 35°. It is seen
that for moderate global strain levels, the stresses are small even for a tendon thickness of 9

mm which is larger than normally applied in a flexible pipe.

[+ ]
X,

//" . |t=3mm |

- "" ,I” / C

”, /" ”’, — /

<& S g

P
o=
0 0.001 0.002 0.003 0.004 0.005 0.006
Longitudinal strain (m/m)

Figure 5.5 Normal curvature stress

5.3.2  The initial stress stiffness effect

During the bending tests reported in [S.1], it was found that by increasing the internal pressure
from 7 to 250 bar, the average sliding bending stiffness was increased by 5.3 kNm? from 21.9
kNm? to 27.2 kNm? The physical interpretation of this is that the tendon will follow the
loxodromic curve rather than the geodesic during bending. Since the tendon is prestressed, a
1992
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local initial stress stiffness will introduce an increased resistance against transverse curvature.

The sideways displacement difference between these two limit curves can be expressed by

Eq.(2.30) as:

2
uz= (2sina + co's s
ptanot sino

) siny (5.16)

The virtual work contribution from the axial load @, in the tendon along one pitch is

determined by:

n
R
Wi:.({Qlu3’]8“3'lmdv (517)

With reference to Figure 5.6, the corresponding external virtual work reads:

w

e

™ (5.18)

where AEI is the increase in bending stiffness from one tendon. By equating the two

expressions and by summation for all n tendons and m armouring layers, the total increase in

bending stiffness AEI,, is obtained as:

m n ;’R,z 4 .2 6 cossaj cos4al (5.19)
AElL, =¥} (9cos’ey; sin0y + 6cos'ey + ——T + —2 + 4) :
j=li=l sin“o;  sin‘ey

The above equation gives an increase in bending stiffness of 7.4 kNm? for the test reported

in [5.1] which is within the variation observed for each individual test.
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Figure 5.6 Theoretical Model

5.3.3  The friction moment

The observed average friction moment under 250 bar internal pressure reported in [S.1] was
1.0 kNm. This represents a reduction by a factor of 2.8 compared to the result predicted by
CAFLEX when using 0.07 as friction coefficient between the armouring layers. As stated in
the previous sub-section, the sideways displacements will be restrained by friction, implying
that the displacements between the tendon and the supporting pipe will mainly occur in the

longitudinal direction. Assuming a constant radius as above, the longitudinal displacement is

given from Eq.(2.29) as:

2 2
_l:!_ cr?s o sinv (5.20)
p sina

ul'-'

The internal work performed by the friction forces along one tendon during one half pitch can

be expressed as:
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" R
W, = [ Zap 8luy|—— dv (5.21)
3 sin

where the summation symbol denotes that the lineloads induced by contact pressures at the

tendon inner and outer surfaces have been included. Further, due to a moment Mf balancing

the friction moment:
W, = M, 5 (522)
By equating the internal and external work and by summation over all tendons in a layer, the

following friction moment M; developed between one armouring layer and the sheath is

obtained:

- 4 cosa R3 (5.23)
I * s B

where A is the gap between each tendon divided by the width of the tendon. Similarly between

two neighbouring armouring layers with opposite but equal lay angles

_8 cos?.  R3 (5.24)
I "ana B(1+h) Taap

The above expressions give a friction moment of 1.14 kNm, which is in good agreement with

the observed value.
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6 EXPERIMENTAL STUDIES

6.1 Introduction

The main purpose of this Chapter is to present verification studies carried out by comparing
stresses obtained by the numerical model developed in Chapter 2 with stresses measured by
strain gauges on one tendon of a 4-inch internal diameter (ID) nonbonded pipe. These tests
were carried out in September 1991 as a part of this study. The specimen used in this test will

in the following be referred to as Pipe 1.

During 1991-1992 fatigue testing was carried out on two pipes, including the specimen
mentioned above and one additional 4-inch ID nonbonded pipe from another producer. These
tests were carried out as a part of the FPS-2000 program and used here as a reference. The

second specimen will in the following be referred to as Pipe 2.

Both pipes were initially exposed to 105 cycles of a specified fatigue test program. These
cycles did not result in fatigue failure of any specimen. Thereafter the load amplitudes were
increased in order to create fatigue and the pipes were tested until fatigue failure occured. The

fatigue failures of tendons were observed from outside as twist induced "“cork-screw"

deformation of the pipes.

The second purpose of this Chapter is to evaluate and explain the observed fatigue failure

modes of both test pipes. Since the fatigue failures were observed as severe twist deformation
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of the overall test pipe structure, it was not possible to know when the first tendon failed. It
was therefore not possible to relate the fatigue failures to S-N data and hence the theoretical

evaluations had to be qualitative, rather than quantitative.

6.2 Description of test rig

The test rig arrangement used in all experiments is illustrated in Figure 6.1.

0 (FIXED) SIDE VIEW

Figure 6.1 Test rig set-up

The test pipes were horizontally mounted in a steel frame rig. One end of the pipe was fixed
to the steel frame at a predefined angle 6. Axial force in the pipe was applied at the opposite
end, using a 500 kN servohydraulic actuator. Note that this arrangement gives a combination
of axial force and moment at the fixed pipe end. This is a realistic modelling of the boundary
condition seen for real flexible riser application. Spherical bearings were further mounted
between the pipe flange and the actuator. Hence, negligible bending moment were expected
at this end, and torque was eliminated in the pipe. In testing mode, the actuator was operated

in close loop load control monitored by the actuator load cell.
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6.3 Description of test specimens

The key parameters needed to describe the structural properties of the two test pipes were
obtained partly by experiments as reported in [5.1]-[5.2] and partly by using the CAFLEX

program. The key values used for the present analyses are given in Table 6.1.

The friction coefficients between the inner and outer armouring surfaces were obtained by
calibrating the friction moment obtained from the new version of CAFLEX (sce Sub-section
5.3.3) against the value obtained from the testing [5.1]-[5.2]. Pipe 2 had antifriction layers at
the inner surfaces of both armouring layers. The measured friction moment was 2.1 kNm at
200 bar pressure, giving a friction coefficient during sliding of 0.1 between the steel layers
and the antifriction layers. Pipe 1 had antifriction layer at the inner surface of the inner
armouring layer only and lubrication had been applied between the steel layers. According to
oral communication with the producer, this lubrication was used for manufacturing purposes
and not to reduce wear. The friction moment was measured to 1.0 kNm at 250 bar internal
pressure, giving a friction coefficient of 0.05 between the lubricated steel layers during sliding,
assuming a friction coefficient of 0.1 between the inner layer and the antifriction sheath in

accordance with the result for Pipe 2.

The producers were notified that the pipes would be tested by combined axial and bending
load cycles. Hence the pipes were fitted with a bending stiffener at one end. The geometry and
bending stiffness distribution of the stiffeners are shown in Figures 6.2 and 6.3, for Pipe 1 and
Pipe 2 respectively. The stiffener was attached to the end termination, and the pipe was
allowed to slide in the stiffener. The total bending stiffness of a cross section covered by the

stiffener was hence the sum of the individual stiffnesses of the pipe and stiffener.

The end termination represents a stress concentration both with regard to global pipe moment
and local tendon stresses. The global stress concentration is due to an increased curvature of
the pipe towards the end. The local stress concentration is due to the termination of each
tendon by means of an epoxy casting inside the inner cylinder surface of the end fitting, see
Figures 6.4 and 6.5. In order to ensure that each tendon is surrounded by epoxy, the

armouring wires are bent outward into a fan configuration. This introduces a possible stress

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Experimental Studies 6.4

concentration at the bend. The purpose of the steel ring shown in Figures 6.4 and 6.5 is to

lock the armouring wires and hence reduce the stress concentration.

The purpose of the bending stiffener is to reduce the global stress concentration. At the Pipe
I bending stiffener/end fitting and at the bending stiffener/pipe transition, there is a jump in
bending stiffness of the order 1:10 and 1:2.2 respectively, at 250 bar internal pressure. Due
to these discontinuities, global stress concentrations are introduced. At the pipe-nipple
transition, the cross sectional behaviour leads to an additional local stress concentration, as no
slip take place between the cross sections as described above. The corresponding transition
values for Pipe 2 are 1:250 and 1:1.06. Thus there will be an increased global stress

concentration at the bending stiffener/end fitting transition for Pipe 2.

The purpose of the bending stiffener is to provide a stiffness transition sufficiently smooth to
reduce bending stresses and to move the bending stress maximum out of the pipe/nipple
region. If this proves to be successful, the fatigue strength of the pipe would be governed by
the fatigue properties of straight pipe sections with no local stress concentrations. This would
lead to a considerable increase in the fatigue life, and to a simplified fatigue design analysis

as the local stress concentration becomes small and possibly negligible.

D = 420

- 200 - 160
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§ 8000 1
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(b) Bending stiffness distribution (Nm)

Figure 6.2 Pipe 1 geometry and bending stiffness distribution
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Figure 6.3 Pipe 2 geometry and bending stiffness distribution
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Figure 6.4  End fitting geometry for Pipe 1

Figure 6.5 End fitting geometry for Pipe 2
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(250 bar pressure)

Table 6.1  Description of test specimens
Parameter Pipe 1 Pipe 2
Weight in air, waterf.  (kgm™') 59.6 520
Weight in air, empty (kgm™!) 51.3 43.7
Axial stiffness (N) 2.14 108 D 1.74 103 V)
Sliding bending stiffn.  (kNm?) 761 g5
(No loading)
Sliding bending stiffn.  (kNm?) 150 D 150V

(200 bar pressure)

Friction moment (7 bar pres.)(kNm) 0.35 0.86
Friction moment (kNm) 1.0 2.1
(250 bar pressure) (200 bar pressure)
Tendon cross section a/b (mm) 6.0/3.0 6.0/3.0
Number of tendons Outer/Inner 60/57 53/50
Armouring radius Outer/Inner (mm) 73/70 74/69
Critical curvature radius (m) 1.0 0.40
Lay angle Outer/Inner (deg) +35/-35 -35/+35

—_—
=

1) Values obtained by CAFLEX
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6.4 Investigation of stress effects at bending gradients

6.4.1  Description of test program

The main purpose of the test was to investigate the effect of end restraints on tendon stresses.
Numerical simulations as those described in Chapter 4 had demonstrated that high stresses
may occur at the pipe neutral axis due to local transverse curvature of the tendon and a non-
linear coupling with axial forces. These simulations also showed that axial stresses may
increase dramatically due to the fact that the elongation at one location can not be
compensated by similar compression in a neighbouring section both due to the position of the
tendon at the end restraint and curvature gradient effects. It was therefore of interest to
measure both these effects and accordingly, the following three sets of tests were carried out:

Test 1: 0° end angle, 250 bar internal pressure and axial tension ranging from 10 to 400
kN in steps of 50 kN.

Test 2: 8° end angle, 250 bar internal pressure and axial tension ranging from 10 to 400
kN in steps of 50 kN.

Test 3: 139 end angle, 250 bar internal pressure and axial tension ranging from 10 to 400
kN in steps of 50 kN.

In the first test, stresses due to axisymmetric load conditions were measured in order to ensure
that the strain gauges worked correctly. Tests two and three were carried out to investigate the
effect of having increased bending gradients. In order to ease installation of strain gauges,
these were mounted at the bare pipe end. This end of the pipe was given a fixed rotation to

induce the wanted curvature variations.

A load case described by 0° end angle, 7 bar internal pressure and 10 kN tension was used

as a reference state for all tests.
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The testing temperature was 20 °C approximately.

6.4.2 _ Instrumentation

Local bending stresses caused by moments about the surface normal were measured by two
pairs of strain gauges mounted 5 and 30 mm from the end fitting along one of the outer layer
tendons. The position of these two strain gauge pairs corresponded approximately to the

neutral axis of bending, as shown in Figure 6.6.

In order to measure the axial stress distribution, four series of three strain gauges were
mounted on the same tendon at four stations positioned at an average distance along the pipe
longitudinal axis of 46 mm, 318 mm, 626 mm and 935 mm from the end fitting. These strain
gauges were also mounted at the neutral axis of bending in order to avoid interaction between
the axial stresses and normal curvature induced bending stresses (Confer Eq.(2.32) and
Eq.(2.66)). The reason why three strain gauges were used at each station was to eliminate the
effect of local bending stresses induced by irregular support of the outer layer from the inner

layer, thus assuming that the average value would represent the axial stress component with

sufficient accuracy.

In order to measure the global curvature distribution, two extensometers were mounted at the
compressive and tensile sides of the pipe at a distance of 160 mm from the end fitting. In

addition, one extensometer was mounted 480 mm from the end fitting on the compressive

side.
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Figure 6.6 Position of strain gauges

6.4.3  Method of analysis

Four different computer programs were used to calculate the tendon stresses.

CAFLEX [1.6] was used to find the tendon axial stresses due to internal pressure and tension.

This program was also used to determine the stiffness parameters in radial direction.

The AFLEX program based on the present theory was used to find the stresses in the tendon
due to bending. AFLEX applies a finite element model for one armouring tendon subjected
to an arbitrary load history defined by axial forces and corresponding global curvature
distributions. In Sub-section 4.7.2 it was demonstrated that due to friction the order of load
application will influence the resulting stresses. Thus, in order to simulate the stress history
throughout loading and unloading, the true combination of tension and curvature distribution
was needed. The load history applied in the AFLEX model therefore consisted of a series of

tensions and curvature distributions.

In order to obtain the curvature distributions at each tension level, the computer program PAS
[6.1] was used. PAS is a computer program for two-dimensional nonlinear static analysis of

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Experimental Studies 6.10

pipes. The curvature was, however, also measured at two stations as described in Sub-section

6.4.2 in order to verify the theoretical values.

The end restraint parameters needed in the AFLEX model had to be found by a local analysis
considering the interaction between the tendon and the epoxy. The computer program SESAM

[6.2] was used for this purpose.

6.4.4 _ Description of numerical models

The finite element model used to find the curvature distribution (the PAS program) is shown
in Figure 6.7. The specimen was modelled as a beam with different boundary conditions at
the two ends. At the left end, the beam was fixed against both vertical and horizontal
translations, whereas the rotation was prescribed according to the respective load cases defined
in Sub-section 6.4.1. At the other end, only vertical translation was fixed. In the horizontal
direction a tensile load T was applied according to Sub-section 6.4.1. The element length used
varied from 39.6 mm to 290 mm. This was obtained by using 64 beam elements.

The stiffness distribution of the bending stiffener section was taken from Figure 6.2 (see also
Figure 6.7), taking into account that the bending stiffener was positioned at the right end
during these tests. The curvature at the instrumented pipe section was therefore controlled by
the pipe bending stiffness only, and could exceed the critical value with subsequent increase
of the bending stiffness. The bending stiffness implemented into the finite clement model was
therefore based on a trilinear relationship between the moment and the curvature as shown in
Figure 6.8, having an initial stiffness according to the measured friction moment and
corresponding curvature [S.1], a sliding bending stiffness according to Table 6.1 and a

significantly higher value for curvatures exceeding the critical value.

The corresponding AFLEX finite element model is shown in Figure 6.9. The model starts 100
mm inside the end fitting, at the end of the steel ring (confer Figure 6.4). Here, each tendon
is bent to provide sufficient room for epoxy infill. The element length from this point to 1150

mm outside the end fitting was 15.3 mm, whereas the clement length was increased to 39.6
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mm for the remaining section. 100 and 175 elements were used for the two sections

respectively.

Since the loads were introduced stepwise at 50 kN intervals, no lubrication effect would be
present between the steel layers, and the friction coefficient would be static. The friction
coefficient was assumed to be 0.3 according to Sub-section 3.3.2 and the friction spring
characteristic was tuned to obtain this value after 0.1 mm sliding, corresponding to the
transition between the gross-slip and reciprocating sliding regimes defined in Sub-section
3.2.2. The Coulomb friction model was used as the test-rig set-up allows one way loading

only.

The load history was selected to investigate the equilibrium states from the reference state
throughout one cycle of tension loading and unloading. The curvature distributions applied
were corresponding to the initial reference configuration and to subsequent configurations at
10 kN, 50 kN, 100 kN, 200 kN, 300 kN and 400 kN tension. Since the pressure was released
prior to application of the end angle, the friction springs were applied at the first load level

after having applied 10 kN tension and the respective end angles.

The radial stiffness of the supporting pipe was calculated by CAFLEX and found to be
8.51-10° Nm™ and 1.87-10° Nm'2 inwards for the outer and inner armouring layers

respectively and 7.0-105 Nm2 outwards for both layers.

At both ends, the surface normal and transverse translations as well as the rotation about the
surface normal were fixed. In the longitudinal direction, a spring was introduced at both ends.
The stiffness of this spring depends on the stiffness of the epoxy infill as well as the geometry
of the cavity, and had to be found from separate analyses by using SESAM [6.2].

The SESAM finite element model is shown in Figure 6.10. The geometry of the model was
taken from Figure 6.4. The tendon was modelled by beam elements with 3 nodes in the
longitudinal direction (linear axial strain), whereas the epoxy was modelled by means of linear

strain triangular elements under plane strain conditions of the twisted sector following the
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helix. Altogether 46 beam elements and 524 triangular elements were used in the model. The

modulus of elasticity of the epoxy was taken to be 2.8 GPa, confer [6.3].

Along the segments a|, a,, a3, 8y, ag, ag, and a,,, the epoxy is rigidly connected to the steel
surface. Thus all translational degrees of freedom were fixed along these segments. Along
segment ag there is a steel ring that restrains the tendon from vertical upward movement. Thus
the vertical translational degree of freedom was fixed along this segment. The segments a5 and
2, are, however, made by the pipe structure itself and were therefore left free to move both
horizontally and vertically. The right end lower comner node represents the end of the tendon.

At this end, an axial tensile load of 1000 N was applied.
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Figure 6.7 PAS finite element model for end restraint effect simulation
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Figure 6.8  Diagram of moment/curvature relationship implemented into PAS
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Figure 6.9  AFLEX finite element model for end restraint effect simulation
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Figure 6.10  SESAM finite element model for Pipe 1 end fitting

6.4.5 _ Results from initial analyses

The result from the SESAM analysis showed that the displacement at 1000 N tension was
0.0453 mm which gave a longitudinal spring stiffness in the AFLEX model of 2.2 107 Nm!

Figures 6.11 and 6.12 show the differsnt curvature distributions obtained by PAS for
alternative tension levels for the 8° and 13° end angles respectively. It is seen that as the

tension increase, the curvature build up to high values at the end fitting. This is a consequence
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of the low bending stiffness of the pipe at the fixed end. It is also seen that the change of
Curvature tends to be reduced for increasing tension. This will limit hysteresis effects on the
stresses, since the major part of the curvature change take place at relative low tension and

contact pressure values.
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Figure 6,11 Curvature distribution for Figure 6.12 Curvature distribution for
alternative tension levels, 8° end angle alternative tension values, 13° end angle

6.4.6 _ Measured and calculated axisymmetric stresses

Figure 6.13 shows the axisymmetric stresses obtained by CAFLEX together with the observed
values. The measured values were obtained by averaging all strain gauge values. It is seen
that the measured stress due to 250 bar intenal pressure is 35 MPa less than the calculated
value, whereas very good correlation between the measured and calculated values is obtained
due to the increase in applied tension. It is difficult to explain the initial deviation, as the end-
cap induced tension due to the internal pressure should ensure almost equal load sharing
between the two armouring layers. One possibility is that the end restraint properties are
slightly different for the two layers. If so, the result will be that one layer will carry more load
than the other close to the end fitting. The coefficient of variation for these measurements was
found to be 0.20-0.25 for all load steps, which indicates that local bending stress effects
induced by the irregular inner layer is proportional to the axial stress and should be considered
in the stress analysis of the outer layer. This is, however, counteracted by the fact that the

inner layer normally will have the highest stresses due to large contact loads. Since the inner

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Experimental Studies 6.15

layer normally rests on thermoplastics, such effects are expected to be less important for the

inner layer.
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Figure 6.13 Measured and calculated axisymmetric stresses

6.4.7 __ Measured and calculated bending induced stresses

Figures 6.14 and 6.15 show the measured and the calculated curvature at the extensometers
for 8° and 13° end angles respectively. In these figures curves are used for the measured
values whereas the calculated values are indicated by markers. It is seen that for Station |
which is closest to the end fitting, there is an initial deviation which tends to be eliminated
as the tension is increased. This may be due to deviation between the actual bending stiffness
and friction moment, and the values used in the calculations for the initial configuration and
at low tensions. For station 2 it is seen that the calculated curvatures decrease for tension
values above 50 kN whereas the measured values stay almost constant above this value. The
measured constant curvature is due to exceedance of the maximum tolerance limit for the
extensometer at station 2. The actual curvatures in station 2 could therefore have been slightly
above this value. This indicates that the calculated curvature gradient is steeper than the actual

gradient. The actual bending stiffness may therefore have been slightly above the values used
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in the simulations. The measured bending stiffness values reported in [5.1] indicate higher
bending stiffness than used in the calculations. However by using these values, the calculated
values were significantly above the measured values. Having in mind that the curvature
gradient is very steep, the calculated curvature distribution is therefore believed to be in

reasonable agreement with the measured behaviour.

It is also seen that there is a significant hysteresis in the measured curvature behaviour. The

curvature seems to be constant until 150 kN - 200 kN of the tension load is released.

In the subsequent figures the calculated values are shown by curves, whereas the measured

values are shown by markers.

Figures 6.16 and 6.17 show the calculated axial stress distribution together with the measured
values for 100 kN and 400 kN tension levels and for 8° and 13° end angles respectively. It
is seen that for the 8° end angle there is good correlation between the measured and calculated
stresses at 400 kN tension, whereas the measured values are significantly below the calculated
values at 100 kN. This can be explained by looking at Figure 6.14. The measured curvature
is less than the calculated and the deviation is seen to be constant for all tensions above 100
kN. The relative contribution from this deviation will, however, be larger at 100 kN than 400
kN. For 13° end angle there is good correlation for both 100 kN and 400 kN tensions at the
two closest strain gauge stations and this is in agreement with the good correlation found
between measured and calculated curvatures (See Figure 6.15) for these tension levels. It is
seen that the measured values at the two next strain gauge stations are significantly below the
calculated values. However, the lesson learnt during these simulations was that the resulting
stress distribution is very sensitive to small changes in the curvature distribution. Considering
these factors, the measurements confirm that axial stresses will build up at bending gradients,

in a similar way as calculated by the theoretical model.

Figures 6.18 and 6.19 show the corresponding theoretical and measured bending stresses at
the two strain gauges that were used for this purpose. It is seen that there is a good correlation

specially at high tension levels. The deviation at low tension levels is similar to the behaviour
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found for the curvatures and may be due to deviation between the bending stiffness used and

the actual value.
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Figure 6.14 Measured (solid line) and Figure 6.15 Measured (solid line) and
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Figure 6.16 Measured (dots) and calculated Figure 6.17 Measured (dots) and calculated
(solid line) axial stresses for 8° end angle (solid line) axial stresses for 13° end angle
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Figure 6.18 Measured (dots) and calculated Figure 6.19 Measured (dots) and calculated
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Figures 6.20 shows the calculated and measured axial stress history at the first strain gauge
station for 13° end angle. It is seen that the measured hysteresis is less for high tension values.
This is believed to be due to the curvature hysteresis shown in Figure 6.15. As the curvature
stay constant during the first phase of unloading there will be limited sliding and hysteresis.
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Figure 6.20 Measured (dots) and calculated (solid line) axial stress history at strain gauge
station | for 13° end angle
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6.5 Pipe 2 fatigue testing

6.5.1  Fatigue test program

The fatigue test of Pipe 2 consisted of two load sequences as described in Table 6.2

Table 6.2 Test conditions for Pipe 2

6.5.2 Description of test results

Sequence no. Int. pressure Tension range End angle Number of
(MPa) (kN) (deg.) cycles
1 20.0 0.2 - 130.0 10.0 106
2 20.0 0.2 - 260.0 5.0 5100
D E—

The test was terminated after 5-10° cycles of Load sequence 2, due to observed twist

deformation of the pipe structure. Inspection of the pipe showed that these deformations were

due to fracture of both armouring layers [6.4]. The fractures in both layers occured due to

metal fatigue at the tendon bends inside the end fitting. In the inner layer, 20 out of 50

tendons failed whereas 44 out of 53 tendons failed in the outer layer. Among these failures,

18 and 43 failures occured within the shaded areas shown in Figure 6.21 for the inner and

outer layers respectively.

The following discussion will concentrate on investigating a possible correlation between the

observed failures and the stress ranges found by theoretical calculations.
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Figure 6.21 Fracture regions inside end-fitting of Pipe 2

6.5.3 _ Method of analysis

CAFLEX, AFLEX, PAS and SESAM were used in a similar way as described in Sub-section
6.4.3 in order to predict the stress ranges inside the end fitting. However, since the fatigue
failures occured at the tendon bend inside the end fitting, the SESAM analysis was also
applied to investigate the local bending stresses at this point.

The stress ranges were found as stress differences between two load conditions. Due to friction
and nonlinear curvature/tension interaction, it was not obvious that the maximum stress ranges
were identified by considering the minimum and the maximum tension levels. It was therefore
necessary to examine the stress history throughout loading and unloading. Since all failures

occured at the same cross section, only the stress history of the first element was needed.

The maximum longitudinal stress range Ac), found during one load cycle was taken as the

sum of the axial and local bending stresses at the actual cross section as follows:

Ac,=Ac,+Acy, (6.1)
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where Ag, is the axial stress range and AGy; is the local bending stress range caused by

bending about the X3-axis.

The AFLEX program can perform stress analysis for one tendon in each run. In order to find
the stress ranges around the circumference of the cross section, 8 different tendons were

investigated, each found at 45 degrees intervals around the pipe circumference.

6.5.4  Description of numerical models

The finite element model used in the PAS program to find the curvature distribution is shown
in Figure 6.22. The pipe was modelled in a similar way as described in Sub-section 6.4.4. The
average element length within the bending stiffener region was 39.2 mm and was increased

to an average value of 176.5 mm outside this region.

The corresponding AFLEX finite element model is shown in Figure 6.23. The model starts
85 mm inside the end fitting, close to the end of the steel ring (Confer Figure 6.5), where each
tendon is bent in order to provide sufficient room for epoxy infill. The element length from
this point to a section 1015 mm outside the end fitting was 13.4 mm while the element length
was increased to 38.6 mm for the remaining section. This was obtained by using 100 and 175
elements for the two sections respectively. The friction coefficient between the armouring
layers and the respective antifriction layers was found by CAFLEX to be 0.10. The Coulomb
friction model was used. The characteristic of the friction springs in the Coulomb model was
based on applying the full magnitude of the friction force after 0.] mm displacement as

described in Sub-section 6.4.4.

The load procedure was further based on investigating the subsequent equilibrium states from
the reference state defined by the respective end angles and 0.2 kN tension and throughout one
cycle of tension loading and unloading. The curvature distributions applied were corresponding
to tension levels of 0.2 kN, 10 kN, 50 kN and 130 kN for Load sequence 1. The
corresponding curvature distributions for Load sequence 2 were taken at 0.2 kN, 10 kN, 50
kN and 260 kN tension.
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The stiffness along the surface normal was found by CAFLEX analyses to be 5.1-108 Nm™2
and 1.23-10° Nm*2 inwards for the outer and inner armouring layers respectively and 9.2-106
Nm™2 outwards for both layers. At both ends, the surface normal and transverse translations
as well as the rotation about the surface normal were fixed. In the longitudinal direction, a
longitudinal spring was introduced at both ends. The property of this spring depends on the
stiffness of the epoxy infill as well as the geometry of the cavity, and had to be found from

separate analyses by using SESAM.

The SESAM finite element model is shown in Figure 6.24, where the geometrical quantities
were taken from Figure 6.5. The tendon and surrounding epoxy was modelled in a similar way

as described in Sub-section 6.4.4.
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Figure 6.22  PAS finite element model for Pipe 2

Figure 6.23  AFLEX finite element model for Pipe 2
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Figure 6.24  SESAM finite element model for Pipe 2

6.5.5 Results from initial analyses

The result from the SESAM analysis showed as expected a stress maximum at the tendon
bend at the transition between segments a; and a in Figure 6.24. The bending stress was
tensile at the outer surface and compressive at the inner surface of the tendon. For each MPa
in axial stress, there was 0.30 MPa bending stress when assuming a sharp bend of the tendon
according to Figure 6.5. Inspection of the tendons in the end fitting, confirmed the sharp

directional change.

The displacement at 1 kN tension was 0.0559 mm, which gave a longitudinal spring stiffness

to be used in the AFLEX model of 1.79-107 Nm'!

Figures 6.25 and 6.26 show the curvature distributions obtained by PAS at alternative tension
levels for Load sequence | and Load sequence 2 respectively. It is seen that as the tension
increases, the curvature build up to higher values at the end fitting. This is caused by the fact
that the bending stiffener is far too soft to provide a gradually increase of stiffness between
the pipe and the fixed end fitting. The largest curvature occur in Load sequence 1. This is due

to the 10° end angle, which is reduced to 5° for Load sequence 2.

Table 6.3 gives the tendon axial stresses for the armouring layers as well as the contact

pressure occuring between the armouring layers as obtained by CAFLEX for three alternative
tension levels covering both load sequences and at 200 bar intemnal pressure.
1992
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Table 6.3 Axial stresses due to axisymmetric loading of Pipe 2

Quantity T=0.2kN T=130 kN | T=260 kN
Axial stress o, 160 244 328
Outer layer (MPa)
Axial stress o, 160 258 356
1 Inner layer (MPa)
Contact pressure 0,, 1.9 34 4.6
(MPa)

CURVATURE (1/M)

01

A T TR T O O T T 2

Figure 6.25 Curvature distributions at Figure 6.26 Curvature distributions at
alternative tension levels for Pipe 2, Load alternative tension levels for Pipe 2, Load
sequence 1 of fatigue testing sequence 2 of fatigue testing

6.5.6 _ Results and discussion of the AFLEX analyses

Figure 6.27 shows the theoretical normalized stress ranges for both layers and load sequences.
The stresses were normalized with respect to the theoretical fatigue limit obtained by linear
interpolation in the Haig diagram (Confer Sub-section 1.2.2). The fatigue limit was assumed
to be 482 MPa at zero mean stress. This value was based on fatigue tests of individual
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tendons as reported by Eknes and Berge [6.4]. The fracture zones are indicated by the shaded
areas. It is seen that for Load sequence 1, the stresses were within the fatigue limit except for
two points being slightly above the fatigue limit. For Load sequence 2, however, the stress
ranges were far beyond the fatigue limit, having maximum values approximately in the middle
of the observed fracture zones. For the non-fracture zone, the stresses were found to be below
the fatigue limit. The calculated distribution of stress ranges was therefore in fairly good
agreement with the observations. The high variation of the stress around the circumference

indicates that curvature effects give significant contributions to the total stress range

055

00s

{a) Loadcase 1 Inner layer (b} Loadcase 1. Outer layer

(c) \Lloadcase 2. Innerlayer (d) Loadcase 2. Outer iayer

Figure 6.27 Normalized stress distribution at the fracture cross-section of Pipe 2
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6.6 Pipe 1 fatigue testing

6.6.1 Fatigue test program

The fatigue test of Pipe 1 consisted of two load sequences as described in Table 6.4

Table 6.4 Test conditions for Pipe | during fatigue testing

Sequence no. Int. pressure Tension range End angle Number of
(MPa) (kN) (deg.) cycles
| 25.0 0.2 - 200.0 10.0 106
2 25.0 0.2 - 500.0 5.0 1.3-108

6.6.2

Description of test results

The test was terminated after 1.3-10° cycles during Load sequence 2 due to severe twist

deformation in the pipe. Inspection of the different layers of the pipe structure showed that

the fatigue failure included several fractures in both armouring layers [6.5]. The results from

an inspection of each individual fracture can be summarized as follows:

The initial failure had taken place in the inner tensile armouring layer. The failures of

individual wires was caused by fretting fatigue as evidenced by the character of the fracture

surfaces and the presence of oxide debris.

Almost all failures of individual armouring tendons were within a distance of 2 m from the

end of the bending stiffener.
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Practically all failures of the inner layer occured along the top of the pipe on the
compressive side relative to the global bending moment (20 fractures) or within a region

90° from the top (17 fractures) (see Figure 6.29).

Failures in the outer layer had taken place inside the epoxy casting of the termination,
concentrated on the tensile side of the pipe relative to the global bending moment (20
fractures). These fracture surfaces had significantly smaller fatigue areas than found for the
inner layer fractures, which indicates that these failures were secondary, caused by load

redistribution following the failures of the inner layer.

The distribution of failures for the outer layer is indicated by the shaded area in Figure 6.28.

20 out of 60 tendons failed and all fractures were within the shaded area.

The distribution of failures in the inner layer for the first 3 m of Pipe 1 is shown in Fig 6.29.
In this Figure the pipe has been rotated 90 degrees towards the reader, so that the compressive

side of the pipe is positioned at Z=0, closest to the reader.

As fretting induced fatigue was the primary source of failure, and due to the fact that this
phenomenon depend primarily on contact stresses and relative displacements (confer Sub-
section 3.2.2), it is of interest to find a possible correlation between the observed failures, and

the actual contact forces and displacements found from theoretical analyses, confer Sub-section

6.6.5.

Figure 6.28 Fatigue failure zone for outer layer of Pipe |
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Figure 6.29 Distribution of fretting failures at the inner layer of Pipe 1|

6.6.3 _Method of analysis

In order to predict the stress and relative displacements of the armouring layers the same

procedure as described in Sub-section 6.5.3 was used.

However, since the position of the fretting fatigue failures were distributed at different
positions along the pipe longitudinal axis the procedure described in Sub-section 4.8.2 had to

be used in addition. The stress and relative displacement ranges were calculated based on

Eqs.(4.4)-(4.6).

6.6.4 _ Description of numerical models

The finite element model used in the PAS computer program in order to find the curvature
distribution is shown in Figure 6.30. The tensile load T was applied according to Section 6.6.1

for the two load sequences. The element length was in average 46.3 mm along the bending
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stiffener, and was increased to an average of 68.9 mm outside this region. In total 124

elements were used.

The AFLEX finite element model of the tendon, is shown in Figure 6.31. The model included
100 mm inside the end fitting and was started at the end of the steel ring (See Figure 6.4).
The element length from this point to 1075 mm outside the bending stiffener, where the most
severe curvature changes were expected, was 20.3 mm whereas the element length was
increased to 43.2 mm for the remaining section. 150 and 125 elements were used for the two
sections respectively. The friction coefficients used were 0.05 between the armouring layers
and 0.1 between the inner layer and the supporting sheath according to Section 6.3. The
Coulomb friction model was applied. The spring stiffness was tuned to give the maximum
friction force for 0.1 mm displacement corresponding to the transition between the gross-slip

and reciprocating sliding regimes according to Sub-section 3.2.2.

The load sequence was found from investigation of equilibrium states from the reference state
defined by the respective end angles and 0.2 kN tension and throughout one tension cycle. The
curvature distributions applied were corresponding to tension levels of 0.2 kN, 10 kN, 50 kN
and 200 kN for Load sequence 1. The corresponding curvature distributions for Load sequence
2 were taken at 0.2 kN, 10 kN, 50 kN and 500 kN applied tension.

At both ends, the surface normal and transverse translations as well as the rotation about the
surface normal were fixed. In the longitudinal direction, longitudinal springs were introduced

at both ends according to Sub-section 6.4.4.

The application of the SESAM finite element model was described in Sub-section 6.4.4.

1 \9 6 26 30 120 125

ST S

Figure 6.30 PAS finite element model for fatigue analysis of Pipe 1
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Figure 6.31 AFLEX finite element model for fatigue analysis of Pipe 1

6.6.5 Contact geometry and stresses

In order to study the fretting performance of the armouring tendons, an investigation of the

contact geometry and the associated stresses was required.

From the specimen it was observed that the fretting damage occured at two almost circular
regions on either side of the inner tendon outer surface (Confer Figure 6.32 a). This is
explained by the fact that the curvature of the outer tendon is higher than for the inner tendon
along the line of possible contact. Thus contact will occur at one point on each side of the

tendon centre line.

The Herz contact theory assumes that the surrounding material volume is large compared to
the volume having locally high stresses at the contact area. As the observed contact areas were
found to be of similar dimension as the cross section area of the tendons, this theory was
considered irrelevant in this case. A simplified approach was therefore introduced, assuming
that the contact area is circular with a surface radius of curvature equal to the curvature of the

line of possible contact. The contact area and stresses can then be found by the following

procedure (see Figure 6.32 b):
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1. Calculate the curvature along the possible contact line K.

2. Express the indentation # as a function of the contact circle radius ¢ and the curvature

found above

3. Express the maximum contact stress 6, by Hookes law using the Youngs modulus Cg,

the indentation u and the tendon thickness b.

4. Assume a linear distribution of the contact stress and calculate the total force from the

contact area.

5. Determine the force resulting from the common area of two crossing tendons and the

average contact pressure between them oy,.

6. Due to the observation of two contact regions, the contact stress and geometry is found

by equating the result from step 4 with half the value from step 5

By using the above procedure, the following results emerge for the maximum contact stress

o, and the contact radius c:

2 ) 6.2)
6 = |C.o, 2 _SM% ©.
c \J°2221tbRtan2d

2 2
c = R [022 a‘b sin“o,7 6.3)
sinZa cos2a  Co 27R tan2al

Ph.D. Thesis Svein Saavik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes

Experimental Studies 532
—_—— - T “ V4 Outer tendon
Frutung.spots // — - — ___7~ §/j
N 2
j/ —— — \/
f ~
-
Inner tondon

(a) Freming Geomelry
Load = 022 o shaded area Quter lendon u

Innar tendon

Secuon D-D

{b) Contact pressure model

Figure 6.32 Consideration of tendon contact geometry and stresses

6.6.6  Results from initial analyses

The result from the SESAM analysis showed an increase in the longitudinal stress at the
tendon bend of 0.26 MPa for each MPa in axial stress. This was, however, based on assuming
that the tendon had a sharp bend, see Figure 6.4. However, by inspecting the tendons in the
end fitting, it was found that the actual directional change was much smoother than indicated
in Figure 6.4, as a radius of curvature of 30-40 mm was measured. The major part of axial
load in the tendon will therefore be transmitted into the epoxy by means of membrane action

only.

This was confirmed by modelling the actual geometry by use of the SESAM program. The
resulting bending stress was now reduced to 0.02 MPa per MPa axial stress, which also shows

the importance of the detail design and manufacture of the end fitting.

Figures 6.33 and 6.34 show the curvature distributions obtained by PAS at four alternative
tension levels for the two load sequences. It is seen that as the tension increase, the curvature
build up at the end of the end fitting. Two distinct peaks are observed. The left peak is due

to the linear increase in stiffness of the bending stiffener, whereas the second peak is due to
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the step in stiffness between the bare pipe and the last 200 mm of the bending stiffener. The
largest curvature occur in Load sequence 1. This is due to the 10° end angle, which is reduced

to 5° for Load sequence 2.

Table 6.5 gives the tendon axial stresses for the armouring layers as well as the contact
pressure between the armouring layers as obtained by CAFLEX for four alternative tension
levels and at 250 bar internal pressure. By using the contact pressures given in Table 6.5 in
Eq.(6.2) and Eq.(6.3) it was found that the local contact stress between the tendons would vary
in the range 28-60 MPa, whereas the corresponding contact circle radius would vary in the
range 0.6-0.8 mm for Load sequence 2. The observed fretting spots were slightly larger,
having a radius in the range 1-1.5 mm [6.5]. It is noted that the contact areas will tend to

increase during the wearing process.

Table 6.5 Axial stresses due to axisymmetric loading

Quantity T=0.2kN T=50 kN T=200 kN | T=500 kN
Axial stress o, 140 168 252 420

I Outer layer (MPa)

| Axial stress G, 153 184 276 458
Inner layer (MPa) '

I

Contact pressure o,, 1.9 23 34 5.6 1
h (MPa) ‘
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Figure 6.33 Curvature distributions for Load Figure 6.34 Curvature distributions for Load
sequence 1 of Pipe 1 fatigue testing sequence 2 of Pipe 1 fatigue testing

6.6.7 _ Results and discussion of the AFLEX analyses

Figure 6.35 shows the normalized stress ranges obtained in the outer layer for both load
sequences at the failure cross section. The stresses were normalized with respect to the
theoretical fatigue limit which in this case was assumed to be 472 MPa at zero mean stress.
This value was based on fatigue tests of individual tendons as reported by Eknes and Berge
[6.5]). It is seen that the stresses are within the fatigue limit since all values are below 1.0.

This confirms the observation that no fatigue failures were observed in these fractures.

It is seen that the stress values are almost constant around the circumference. This means that
there is limited influence from bending in this case. This is caused by the bending stiffener

design providing the maximum curvature to occur far away from the end fitting restraint.

The distribution of the maximum stress ranges of the inner layer are shown by contour plots
in Figures 6.36 and 6.37 for Load sequence 1 and Load sequence 2 respectively. In these
figures the pipe has been rotated 90 degrees towards the reader, so that the compressive side

of the pipe structure is positioned at Z°=0, closest to the reader.
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It is seen that for both load sequences, there are relative low stresses at the compressive side.
This is reasonable since bending will induce tendon axial compressive stresses. The stresses
on the tensile side were found to be higher. Since the large part of the fatigue failures were
observed on the compressive side, this imply that the stress range was not the goveming

parameter in this case.

The distribution of the maximum relative displacement ranges are shown by similar contour
plots in Figures 6.38 and 6.39 for Load sequence 1 and Load sequence 2 respectively. The
fretting failures (for the first 3 m of the pipe) are further indicated by circular markers in
Figure 6.39. By looking at the relative displacements it is seen that the relative displacements
occuring in Load sequence 2 were smaller than in Load sequence 1. This is caused by the fact
that the curvature changes were smaller and that the contact pressures were higher in Load

sequence 2, thus creating less sliding of the armouring.

According to Nakazawa et al. [3.9], fretting fatigue occured for relative displacement
amplitudes up to 20 pm, i.e. displacement ranges up to 40 um at a contact stress of 50 MPa,
From Figure 6.39 it is seen that for Load sequence 2 there is a large area right outside the
bending stiffener (At Z/=1.98 m) in which the relative displacements are in the range 20-70
um. This is partly within the fretting fatigue regime as reported in [3.9]. Spots of such low
values are also found evenly distributed along the compressive side and it is seen that fretting
failures occured in such areas with a concentration of failures within the largest area calculated
by the theoretical model. It is however noted that corresponding minimum relative
displacement areas are also observed on the tensile side which should indicate that similar
failures should be found there too. Such failures are, however, not found in the experiments.
This can be explained by the fact that the theoretical model has been based on a friction
spring stiffness that will give the full magnitude of the friction force for 0.1 mm sliding,
combined with a friction coefficient of 0.05 between the two armouring layers and 0.1
between the inner layer and the sheath. In the stick regime, however, the coefficient of friction
may be considerably higher [3.3], thus giving locally higher friction within the minimum
relative displacement areas. As the stresses at the tensile side is higher than on the

compressive side, higher contact pressures will be found on the tensile side. Thus stick-slip
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may have been suppressed on the tensile side, i.e. fretting induced fatigue was not initiated

on this side.

035

(a) Loadcase 1. Ouler layer (b) Loadcase 2. Ouler layer

Figure 6.35 Normalized stress ranges in the outer layer failure cross-section of Pipe 1

e 1
190 e
Below 10

Figure 6.36 Distribution of maximum stress ranges in inner layer of Pipe 1, Load seq.1
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Figure 6.37 Distribution of maximum stress ranges in inner layer of Pipe 1, Load seq. 2

Belew

Figure 6.38 Distribution of maximum relative displacement ranges for Pipe 1, Load seq. 1
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Figure 6.39 Distribution of maximum relative displacement ranges for Pipe 1, Load seq. 2
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7 CONCLUDING REMARKS

The main intention of this study has been to improve existing methods for stress and fatigue

analysis of nonbonded flexible pipe armouring exposed to dynamic loading.

The overall conclusion from the investigations carried out is that the derived finite element

model represents a significant step forward, compared to existing formulations.

The main advantage of the present formulation compared to existing models is its capability
to consider realistic boundary conditions for individual tendons, and to analyse a pipe with
varying curvature. Such improvements are important as both features are necessary when

dealing with stress analysis of a riser termination, where the most severe fatigue damage

normally is found.

The present model is shown to give good correlation with experimental data, both with regard

to stresses and displacements.

The potential of the method is to perform lifetime analysis of flexible pipe termination on the
basis of SN-data in a similar way as for conventional steel risers. Evaluation of fretting fatigue
and wear should also become possible. The lack of test data related to various failure modes
is, however, obvious, and calls for extensive future testing in order to make the present

method applicable for practical design of flexible risers.
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More specific conclusions will be given in the following.

7.1 Conclusions

An 8 degree of freedom curved beam element has been developed. This has been obtained by
application of kinematic restraints forcing the tendon element to slide on the deformed
cylinder. The restraints have been formulated by use of differential geometry and eliminates
the need for a fixed reference system. The nonlinear equations have been established by an
updated Lagrangian formulation and solved by a Newton-Raphson incremental procedure. The
stresses and displacements of the tendon are defined from the twist, curvatures and
displacements along the local curvilinear axes. This gives an efficient formulation. The model
allows for arbitrary boundary conditions as well as contact forces induced by friction. The
formulation can handle arbitrary load histories defined by any combination of tension and
corresponding global curvature distribution. This is known to be sufficient to analyse the
bending stiffener region of flexible pipes. The formulation has been implemented into the

computer program AFLEX.

Numerical studies has been carried both to verify the model and to study various physical
effects. Comparisons between the numerical and analytical results obtained for constantly

curved pipes show excellent agreement.

The effect of variable curvature combined with zero friction has been investigated. It has been
shown that the results obtained by analytical solutions based on constant curvature can be used
to find conservative estimates for twist and changes of normal curvature for an individual

tendon. The tendon movements on the supporting surface are, however, significantly

underestimated by the analytical expressions.

Transverse displacements have also been studied for friction-free pipes as a function of
tension. The results show that the geodesic represents the upper limit for the displacements
as the tension is increased. At low tensile stresses the tendon will be restrained from moving
to the geodesic by the cross section stress resultants induced by the twist and changes in

curvatures needed to reach the geodesic.
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One effect of friction is that the transverse displacements will be significantly reduced
compared to the geodesic solution. It is, however, shown that these displacements will not in
general be completely eliminated as one may conclude from simple analytical considerations.
This is due to the fact that the resultant friction force depends on the slip direction. At zero
transverse displacement, the transverse friction force component is zero. Slip will therefore

take place until the transverse friction force component balance the transverse tension

component.

The maximum longitudinal slip is insignificantly influenced by friction. This is due to the fact
that the shear stresses needed to keep the tendon fixed are much higher than the friction

resistance.

The effect of selecting alternative friction spring formulations has been studied. The results
show that a hyperelastic spring formulation gives similar results for axial stress ranges as a
Coulomb friction model provided that the curvature history is periodic and include change in

direction. However, in order to follow the true stress history, the Coulomb friction model has

to be used.

For prediction of stress ranges, the effect of selecting different load histories has been found

to have limited influence as long as the start and end values are equal.

Under action of friction, end restraint and variable curvature, high axial stresses may occur.
This is caused by the fact that the curves described by the tendon at the tensile and
compressive sides of the pipe have different length. In order to eliminate the length difference,

tendon is fed into the unbalanced section thus inducing axial stresses by friction.

A case study carried out on a 8-inch flexible riser shows that high stresses will occur at the
point the global curvature starts for extreme loading. The maximum stress is dominated by
friction induced axial stress and bending stress caused by local transverse curvature. The
maximum is found close to the neutral axis of global bending. The transverse tendon

movements have been found to be eliminated for the inner layer and limited for the outer

layer.
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Comparisons made between the numerical solution and an existing model for the 8-inch riser
demonstrate that simplified models can not be used to calculate stresses at end restraints.

Conservative estimates can, however, be obtained for the tendon movements.

An improved analytical formula for calculating the friction moment has been developed. This

expression has been found to give good agreement with test data.

The geometric stiffness effect being observed as an increase in the sliding bending stiffness
as the pressure is increased, has been given a physical interpretation. A simple analytical

formula that describes this phenomenon has been developed.

Experimental work has been carried out to verify the stresses predicted by the numerical
model. This has been obtained by measuring strains in one outer layer tendon of a 4-inch test
pipe. Both axial stress distribution and local bending stresses due to transverse curvature were
measured. The results show that there is good agreement between calculated and measured
bending stresses, specially at high tension levels. For the axial stress, deviations have been
found for some cases. This is explained by the difficulties of correctly describing the curvature
distribution as the curvature gradients were high in the tests. The measurements, however,

confirm that axial stresses will build up in a similar way as predicted by the numerical model.

In order to estimate the end fitting axial stiffness and to investigate local stress effects inside
the end fitting the computer program SESAM has been used. The results show that local
bending stresses will occur at the tendon bend inside the epoxy casting. The stress values have

been found to be sensitive to the geometry of the bend.

Fatigue testing has been carried out on two 4-inch flexible pipes. For one of the specimens
the fatigue failures were found at the point of tendon directional change inside the end fitting
in both layers. This was caused by a combination of local bending stresses induced by tendon
tension and a global moment maximum at the end fitting. Good correlation has been found

between the position of the failures and the predicted stress ranges.

For the other specimen the primary failure was found to be fretting fatigue in the inner layer.
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A simple analytical model has been developed to predict the maximum contact stress at
individual contact points between two cross-wound armouring layers in direct contact. Good
agreement has been found between the predicted contact geometry and the observations. Good
correlation has also been found between the position of the fractures and the predicted

conditions of relative displacements.

7.2 _Recommendations for further work

It has been found that the developed model is capable of accurately describing relevant
conditions of stresses and slip for predicting different failure modes. The potential of the
method is therefore to perform lifetime analysis on the basis of various failure modes like
metal fatigue, fretting and wear. However, the failure modes found from the experimental
work are not included in the failure models presented so far in the literature. This together
with development of new flexible pipe designs to meet future requirements of deep water

petroleum production requires future research in order to characterize relevant failure modes.

The high stress ranges found in the 8-inch flexible riser indicates that the approach of not
allowing stress ranges to exceed the fatigue limit may not be adequate. If this is the case, the
SN-approach has to be used in order to calculate the fatigue life. More research work has to

be done to establish SN-data for relevant environmental conditions.

In this study the outer tension armouring layers have been focused on. Other armouring
elements such as the interlocked Zeta spiral will require another model. Due to direct metal
to metal contact and high contact pressures, fretting fatigue may be critical. Development of
a model for describing the micro stress and relative displacement conditions for such layers

will represent an interesting extension of the present work.

The present model is based on consideration of one tendon exposed to a given set of load and
displacement conditions. Implementing the present model for one tendon into a model based

on total cross section integration represents a natural extension of the model.

Ph.D. Thesis Svein Sasvik ISBN 82-7119-427-5 ISSN 0802-3271 1992



On Stresses and Fatigue in Flexible Pipes
Concluding Remarks 7.6

The fatigue tests demonstrated that the final damage of the pipe cross section will result from
progressive failures of individual tendons. Failure of one tendon will not cause collapse by
itself but will induce stress redistribution in the cross section. The model described in the

above paragraph will enable such effects to be included in the analysis.

It has been assumed in the present formulation that each tendon can be analysed without
taking into account any interaction with other tendons in the same layer. This has been
considered to be a reasonable assumption as long the curvature is less than the critical
curvature. Due to production tolerances, however, two tendons may be in initial contact prior
to pipe bending. Such effects may also be studied by including a sideways contact formulation

in the above model.
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APPENDIX A

PROOF OF GEODESIC CURVE EXPRESSIONS

A.l1 _ Displacements, torsion and curvatures

Reference is given to Egs.(2.26)-(2.28). The surface normal vector components which are
represented by the second term in these equations, are determined by taking the cross-product
between the two tangent vectors obtained by differentiating the position vector components
of a point on the toroid given by Eqgs.(2.4)-(2.6) with respect to v and ¢ respectively. The

result is;

— -Rpcosvsing + choszvsinq) (A.l)
74

B
022

Rpcosvcosd - choszvcoscp (A1)

is_ = Rpsinvcosch % stinvcosvcosch (A3)

YA
In order to solve the differential equations and to find the associated torsion and curvatures
along the curve, coordinate derivatives with respect to the arc length coordinate up to third

order, are needed. The derivatives are determined on the basis of the same position vector
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components with consideration of the fact that v and ¢ both are one to one functions of the

arc length coordinate X! as:

Z", = pcosd | +Rsinvsingv | -Rcosvcosd¢ | (A4)
Z'll | = -psin<|>t|>'2l +pcosd¢ ;, +Rcosvsing v'zl +Rsinvcosdv ¢ | (AS5)
+Rsinvsingv |, +Rsinvcosd¢ v -!-Rcosvsincpq)'zl -Rcosvcosdd |,
1 3 . .
Z\y = -pcosh¢’,-2psindd 1 |, -psingd ;¢ ,+pcosdd |,
-Rsinvsing v’:’; +Rcosvcosd v:‘; ¢ ,*+2Rcosvsingv v, +2Rcosvcosd v'2,¢',
~2Rsinvsingv l¢'2, +2Rsinvcos¢v | ¢ | +2Rsinvcosyv ;¢ |, +Rcosvsingv v (A.6)
+Rsinvcosyv |, ¢ | +Rsinvsingv ||, -Rsinvsinwiv' | +Reosvcos ¢?,
+2Rcosvsing$ ;0 |, +Rsinvcosd¢ ;v ;+Rcosvsingd (¢ | -Rcosvcosdo |
Z'zl = psing¢ ; -Rsinvcospv ; -Rcosvsing ¢ | (A7)
Z:‘; 1 = p\cosqup'zl +psind¢ ;| ~Rcosvcos ".21 +Rsinvsingv ;¢ (A8)
-Rsinvcosdv , +Rsinvsing ¢ ;v | --Rcosvcosd)([:'z1 ~Rcosvsind¢ ,;
2 . 3 .
Z,m = -psm¢¢.,+2pcos¢¢.l¢'”+pcos¢¢'”¢_,+psm¢¢'“l
-Rsinvcos¢ ",31 +Rcosvsing ",214’.1 =2Rcosvcosgv v || +2Rcosvsing v:‘; 0,
(A.9)

+2Rsinvcos¢v. ,¢21 +2Rsinvsingv | ¢ | +2Rsinvsingv ¢ |, ~Rcosvcosv v |

+Rsinvsingv ;¢ | -Rsinvcosv |}, +Rsinvcosq>q)’2]v'l +Rcosvsin¢¢'3,
~2Rcosvcosd ¢ ;0 |, +Rsinvsing |,v | -Rcosvcos¢d ¢ |, ~Rcosvsing¢ |,

Z) = Reosw, (1.10)

Z'3“ = —Rsinvv.zl +Rcosvv‘| l (A.11)
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2_3“I = —Rcosvv?l -2Rsinvv.lv.“-Rsinvv'lv'“+Rcosvv'“, (A.12)

By solving with respect to the Lagrange multiplier A in Eq.(2.26) and implementing this result
together with Eq.(A.8) in Eq.(2.27), the following differential equation is obtained:

6, = -;2- (A.13)
(p-Rcosv)

where C is an arbitrary constant which can be determined by observing that ¢, is

antisymmetric about the neutral axis of bending. Thus, by simple geometry at v=1/2;

0, = c‘::a (A.14)

Along the curve, v is expressed by the arc length coordinate as:

- S_*;EXI (A.15)

By using Eq.(A.14) and Eq.(A.15) in Eq.(A.13), then develop ¢ | as a Taylor expansion in
R/p, and finally integrating with respect to the arc length coordinate X/, the new ¢ coordinate

¢' emerges:
o* = R (v + 2£sinv) (A.16)
ptanc p

where all R/ terms of higher order than one, are neglected. The first term represents the

previous ¢ coordinate, whereas the second term represents the change induced when following

the geodesic. Further, along the curve:
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Rz\r"l 2, (p—Rcosv)zq)..I L. 1 (A.17)

By using Eq.(A.17) and differentiation of Eq.(A.16), the new v coordinate v’ is further

determined to be:

2
v =v - R cos’a sinv (A.18)

P sin’a

where the second term represents the change in the initial v coordinate. The total relative

displacement between the curve and the toroid is now obtained as:

2
Uy = p2Ap? + R%Av? = R v sinv (A.19)
ptana. tano.

The longitudinal and transverse components of the slip are then obtained by simple

decomposition as:

2 2
u; = pApcoso. + RAvsina = E_cqs ® sinv (A.20)
p sina
2 2
uy = pAgsine ~ RABcos = (2sino+ S8 %) sinv (A21)
ptanc sino

This concludes the proof regarding the displacements needed relative to the supporting pipe

surface in order to follow the geodesic.

The torsion T and the normal curvature K are further determined on the basis of the developed
differentials and use of Taylor expansion in one term of R/p. Thus, by use of Eq.(A.16) and
Eq.(A.18) in the differentials of Egs.(A.4)-(A.12), the following expressions are obtained:
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2
VA ll = cosowosg + Ecosacosvcow + sinasinvsing - CC.’S Olﬁsinvco.«wsintp (A.22)
' p sinat p
2
Z?i = cososing + cosaﬁsinq)cosv - sinasinvcosd + .s clﬁsilwvcosq)cos.v (A.23)
’ p sina p
3 . cosle R
Z| = sino cosv - cos‘y (A.24)
! sino. p
2 . 2 2 . 2
Z l“ = 208 acin¢+ St 0‘r*osvsinqa ~2508 oLcos”vsimtw cos 0‘sinzvsim]) (A.25)
' p
2 cos2a sin?a cosZot 2 cos?o. . 2 2
Z|, = cos¢ - cosvcosf +2 cos“veosd -——_sin“vcosd (A.26)
’ p R p p
3 sin?q; . cos?o . 2
Zh =- Z—Sinv + 3 sinveosy (A.27)
| sind .. sin%acoso; cos?asino; .
Zy =~ 5—-sinvsing + cosvcosd +7 sinvcosvsing (A.28)
2 sindo . sin%ocosat . cos2asino;
Zi = ——sinvcos¢ + cosvsing -7 sinvcosvcos (A.29)
' R
3 sina cos?asina__ 5 . coslasin . 2
Z,, = - cosv+4 cosv=-3_2"_"""sin%y (A.30)
' R? P
The normal curvature is then found from classic differential geometry by:
) 2 2 3.2 sinal R cos’a
Ky = (Z,))° + (Z) + (Z)° = (1-3 cO3v) (A.31)
. D . R .
P sin‘a
1992
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and the torsion by:

a
[

1.1 2.3 2.3 R R R 3 1.2 o) o2
= (2,,(2\Z),-Z,Z) + Z|||(Z,Z,-Z\Z})) + Z),(Z,2,-2,Z)) )

2
(i3) (A32)
= Sinacosa (1 - ..’i( ! -3 )cosv)
R P sin‘a

The above concludes the proof regarding torsion and curvature along the geodesic.

A.2 _ Consideration of tendon rotation along the geodesic

In the above it was shown that normal curvature change and twist will occur along the
geodesic. This will induce cross section stress resultants in the tendons. In Chapter 2 the
assumption was made that the tendon is fixed to the surface normal, and remain so during
deformation of the supporting pipe surface. A possible deviation from this assumption will
occur due to the torque induced by the twist. In order to test the assumption of Chapter 2,
the tendon is allowed to rotate a fixed angle 8, about the longitudinal axis X! as shown in
Figure A.l. This rotation will be restrained by the tension induced contact stress. By
equilibrium and consideration of the tendon rotating on the curved surface, the following

torque differential equation is obtained for the infinitesimal element:

dM X
—1=0,-28, (A.33)
ax! %

By assuming that the constant rotation 8, of the tendon cross section has no influence on the
twist which is represented by the second term in Eq.(A.32), M, is found directly by the torsion
stiffness and the twist. By differentiation of M, and use the result in Eq.(A.33), the maximum

tension force @, needed in order to keep the cross section at the predefined angle 9, is

obtained as:
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3
0,=Ca 25 % ' 3L, (A34)
I tl, R sinza 91

In Figure A.2 this equation has been studied, by investigating a 4 mm thick and 9 mm wide
tendon at 0.1 m layer radius and using 0.5° as rotation tolerance limit. It is seen that at high
curvatures, high longitudinal stresses are needed in order to avoid further rotation for 25° lay
angle, whereas the values are significantly reduced for lay angles above 30°. Since the lay
angles normally used are above 30°, small deviations will occur between the tendon weak axis

and the surface normal even at low axial stresses.

‘£ - M«| +dM'

TS
2\
/
/

ax!

Figure A.l Torsion equilibrium of infinitesimal element
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Figure A.2 Longitudinal stress needed to keep the cross section rotation less than 0.1°
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APPENDIX B
PROOF OF LOXODROMIC CURVE EXPRESSIONS

B.1 __ Strain, torsion and curvatures

Let the vectors, g, of arbitrary length be directed along the centre line and the principal axes

of the tendon

obtained:
Kl = _gi ©
|83|
Kz = _g3—
K] = —-—-g2 °
|82|
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_ dx!

cross section. By use of Eqs.(2.21)-(2.23) the following expressions are

dgz
dx!
|82 |

(B.1)

dg,
(B.2)

(81

dg,
ax}

|81|

(B.3)
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By using the position vector components defined in Eqs.(2.4)-(2.6), the tangent vector g, is
obtained by simple differentiation of these components with respect to the arc length

coordinate X' as:

g = (pd cos¢ + Rv sinvsing - R cosvcosd) E,
+ (pd sin - Rv sinvcos¢ ~ R¢ jcosvsing) E, (B.4)
*+ Rv jcosv E;

Since the loxodromic curve intersects the coordinate curves on the surface with the constant

angle a, the ¢ coordinate is uniquely defined in terms of the arc length coordinate X ! as:

¢ = cosOL X] (B.S)
p

The derivatives of Eq.(B.4) are thus given by using Eq.(B.5) and Eq.(A.15). The length of the

g, vector is determined to be:

gl =1 - _g.coszacosv (B.6)

By further differentiation with respect to X!

d,
il I (—pcpzlsimb + 2Rv ¢ |sinvcosd + (Rv'zl +Rq>'2|)cosvsin¢) E,
dx! '

) o ) (B.7)
+ (p¢jcosd + 2Ev ¢ \sinvsing ~ (Rv,+R¢ |)cosvcost) E,

+ szlsinv E3

The normal vector is determined on the basis of the surface normal, using Egs.(A.1)-(A.3) and

normalization, as:
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-4} . .
BT = cosvsingEy - cosvcos¢E, - sinvEy (B.8)
82

where the normalization is based on the length of the &> vector which is determined to be:

lga| = Rp(l -gcosv) (B.9)

Then by one time differentiation of g, with respect to X/

d,
.i?. = (-Rpsinvsingv ; +Rpcosvcost ¢ ,+2R2cosvsinvsin¢v I -choszvcosw DE,
dX ' ' ' '
(B.10)
*+ (Rpsinvcospv +Rpcosvsing¢ | -2R 2cosvsinvcos¢ v,-R zcoszvsimpq)l VE,
*+ (-Rpcosvy jcoswv | +R zcoszvv'I ~R zsinzw' E;
The unit vector g; along X is determined by taking the cross-product as:
5 . & & (B.I1)
lesl  lgyl gl
By using Egs.(B.4-B.11) in Eqs.(B.1-B.3), the following results emerge:
K = s;:ozcosa . sina;osa(l R cos2acosv) 612
R(1-Zcos?acosv) p '
p
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«1 +sin2a)sinv+(£)2cos2acoszvsinv)
K, = - cosa = P = - -cosa(l+sin2a)sinv (B.13)
P (1—2_..coszouzosv+(_)2coszacoszv) P
P
2 2
(1 —f. cos 0‘cosv+(_l.e.)2 cos oLcoszv)
_ sinfe P sin’a P sina sinac _costo R (B.14)
K3 = = - - r; (1- — COSV)
(1-Zcos®acosv) sin“a P

which concludes the proof regarding twist and curvature changes.

The longitudinal component of the Green strain tensor along the rod centre line is further
determined by consideration of the displacements relative to the undeformed reference system.

The components are determined by using Eq.(B.4) in Eq.(2.56) as:

E;‘lo e -;-(81 -81-6G, " G) = -gcoszacosv + .%(g)zcoszacoszv (B.15)

B.2 _ Proof of the consideration made in Sub-section 2.4.6

In Sub-section 2.4.6, it was noted that the resulting torsion of the cross section may be
obtained in two ways, either by using the G; triad, which is fixed to the tendon cross-section,
directly according to Eq.(2.21), or by use of Eq.(2.11), Eq.(2.16) and Eq.(2.20). The first

alternative was used in the previous derivation of Eq.(B.12), whereas the second alternative

is examined below.

By using x, from Eq.(B.13) and x3 from Eq.(2.14) in Eq.(2.20) and by differentiation and
neglecting higher order terms of R/p, the second term of Eq.(2.16) may be written as:
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do _ _cosasina (1+ I Jcosv (B.16)
dx! P sin’a

The first term is determined by means of Eq.(2.11), where the 7 ; triad has to be based on the
curve principal torsion flexure axes, which generally not are coincident with the G, triad of
the tendon cross-section. The consequence of this is that when expressing the I, vector, the

second derivative of the arc length must be used instead of the surface normal. The result is:

. 2
T « Sinocoso (1 + (2+cos2a+c°s a)ﬂcosv) (B.17)
R sin‘o. P

which gives the same result as Eq.(B.12) when added to Eq.(B.16). This concludes the proof.

B.3  Proof of the consideration made in Sub-section 2.5.3

In Sub-section 2.5.3 it was noted that by using the displacement functions of Eq.(2.29) and
Eq.(2.30) in the curvature increments of Eq.(2.77) and Eq.(2.79), these increments can be used
to obtain the same results as Eq.(2.64) and Eq.(2.66) by respective addition of the increments
defined by Eq.(2.31) and Eq.(2.32). This means that if the geodesic is considered as a
reference state from which further deformation takes place towards the loxodromic curve, the
kinematical description developed in Chapter 2 is consistent with direct application of

differential geometry.

By using the restraints induced by Eq.(2.34), Eq.(2.93) and Eq.(2.94), the twist and normal
curvature increments of Eq.(2.77) and Eq.(2.79) can be approximated as:

Ak, = Ky, + (K3—lcl)u3,| (B.18)
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AK:, = 'leua'l + K3ul'l (B.lg)

Further, by introducing the negative signed versions of Eq.(2.29) and Eq.(2.30) in the two

above equations and differentiation, the following results emerge:

: 2
Ak, = sinocoso (cos a-sinza-l) COSV (B.20)
P sinor
2
Axy = cos o (2+sin2a) cosv (B.21)

The negative sign of Eq.(2.29) and Eq.(2.30) is due to the fact that the geodesic is used as the

reference, rather than the loxodromic curve.

It is now easily seen that by adding the increments of Eq.(2.31) and Eq.(2.32) respectively,
the results of Eq.(2.64) and Eq.(2.66) are obtained for the total increment, which concludes

the proof.
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APPENDIX C

TABLES OF FATIGUE STRESS RANGES

C.1 Pipe 2 stress ranges at failure cross section

The subsequent tables gives the calculated maximum stress ranges at the failure cross section
inside the end fitting of both pipes. The values are obtained at 45° angle intervals of the
surface coordinate v around the circumference. In these tables, Ac, is the axial stress induced
by tension, Ac,, is the axial stress induced by curvature, Ao, ; is the bending stress caused
by bending about the X? axis, Ao, is the total longitudinal stress and Acfg is the fatigue limit

of the material.
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Table C.1 Stress ranges and fatigue limit, Sequence 1, outer layer.

Position, v (°) Ac,, Ao, Aoy, Ao, Acy,
(MPa) (MPa) (MPa) | (MPa) (MPa)
0 84 42 38 164 323
{4 84 48 1l 47 355
90 84 -100 -5 -21 375
135 84 -87 -1 -4 370
180 84 -61 7 30 360
225 84 35 36 155 325
270 84 130 65 279 290
315 84 127 69 275 291
Table C.2 Stress ranges and fatigue limit, Sequence 2, outer layer.
=P<:sition, v () Ao, Ac,, ACy; ] Ao, Acy,
(MPa) (MPa) (MPa) | (MPa) (MPa)
0 168 | -42 38 164 323 |
45 168 -102 20 85 344
90 168 -109 18 77 347
135 168 91 23 100 340
180 168 0 51 219 308
225 168 115 86 369 265
270 168 133 91 392 259
315 168 72 73 313 281
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Table C.3 Stress ranges and fatigue limit, Sequence |, inner layer.

Position, v (%) Ao, Ao, Acy, Ao, Aoy,
(MPa) (MPa) (MPa) | (MPa) (MPa)
0 98 37 4] 176 319
45 98 141 72 311 281
90 98 140 72 310 281
135 98 38 41 177 319
180 98 -70 8 36 359
225 98 -153 -16 -7t 409
270 98 -145 -14 -61 403
E 315 _ 98%-62 ;l 47 356 J‘
Table C.4 Stress ranges and fatigue limit, Sequence 2, inner layer.
Position, v(°) ~ Ac,, Z:ac Aoy, =Ao“ Aofg |
(MPa) (MPa) (MPa) | (MPa) (MPa)
0 196 -48 45 193 314
45 196 90 86 372 264
90 196 182 114 492 230
135 196 155 106 457 240
180 196 31 69 296 285
225 196 -111 26 111 337
270 196 -180 5 21 364 L
| o 196 | -153 13 56 353 ],
e L

Ph.D. Thesis Svein Sasvik

ISBN 82-7119-427-5 ISSN 0802-3271

1992



On Stresses and Fatigue in Flexible Pipes

Appendix C C4
C.2  Pipe 1 stress ranges at failure cross section in outer layer
Table C.5 Stress ranges and fatigue limit, Sequence 1, outer layer
Angle , v (9 =A()'al (MPa); Ao, (MPa) Ao: (MPa) | Aoy, (MPa)
0 112 9 121 342
45 112 -5 107 344
90 112 -14 98 345
135 112 -14 98 345
180 112 -8 104 344
225 112 6 118 342
270 112 15 127 341
Lﬂs 112 15 127 341
Table C.6 Stress ranges and fatigue limit, Sequence 2, outer layer
Angle , v (°) Aoy, ?TV[P&) Aoac=—(_MPa) A: 1 (MPa) | Ao, (MPa)
0 280 17 297 317
45 280 4 284 319
90 280 -10 270 321
135 280 -18 262 320
180 280 -14 266 320
225 280 -12 268 320
270 280 11 291 318
315 280 20 300 317
= L

Ph.D. Thesis Svein Saavik

ISBN 82-7119-427-5 ISSN 0802-3271

1992






